
DWQ : ESPRIT Long Term Research Project, No 22469
Contact Person : Prof. Yannis Vassiliou, National Technical University of Athens,

15773 Zographou, GREECE Tel +30-1-772-2526 FAX: +30-1-772-2527, e-mail: yv@cs.ntua.gr

M. S. Hacid, U. Sattler

Modeling Multidimensional Databases: A formal object-centered approach

Proc. of the Sixth European Conference on Information Systems 1998 (ECIS98).

National Technical University of Athens (NTUA)
Informatik V & Lehr- und Forschungsgebiet Theoretische Informatik (RWTH)
Institute National de Recherche en Informatique et en Automatique (INRIA)

Deutsche Forschungszentrum für künstliche Intelligenz (DFKI)
University of Rome «La Sapienza» (Uniroma)

Istituto per la Ricerca Scientifica e Tecnologica (IRST)

D W Q
Foundations of Data Warehouse Quality

http://www.dblab.ece.ntua.gr/~dwq/

MODELING MULTIDIMENSIONAL
DATABASES: A FORMAL OBJECT-CENTERED

APPROACH

Mohand-Said Hacid Ulrike Sattler

LISI-INSA LuFg Theoretical Computer Science
20, av. A. Einstein RWTH Aachen, Ahornstrasse 55
69621 Villeurbanne, France 52074 Aachen, Germany
msh@lisi.insa-lyon.fr uli@cantor.informatik.rwth-aachen.de

ABSTRACT

In this paper, we propose a formal framework based on description logics as a
basis for both modeling multidimensional databases at the conceptual level and
understanding related reasoning problems and services. Description logics are
well-understood, object-centered formalisms which have already proved their
suitability as a unifying framework for object-centered representation
formalisms. We extend a description logic with new constructors which allow to
define operators on cubes. The constructors we propose correspond in part to
the operators on data cubes given in (Agrawal&al 1997).

1. INTRODUCTION

Recently, much attention has been focused on multidimensional databases.
Many commercial systems based on their own data models have been
developed. The main strength of multidimensional databases is their ability to
view, analyze, and consolidate huge amounts of data. To do so, instead of
presenting tables to the user, data is presented in the shape of so called data-
cubes which can be manipulated by using operators to cut out pieces from large
cubes, change the granularity of dimensions, turn cubes, etc. Because of these
functionalities, multidimensional databases play an important role in Decision
Support Systems, for On Line Analytical Processing, and in Data Warehousing.
In general, multidimensional databases provide two categories of tools:

1) Tools for integration, efficient storage and retrieval of large volumes
of data.
2) Tools for viewing and analyzing data from different perspectives.
These tools allow interactive querying of data and their analysis, often
referred to by ''navigation'' since this way of querying seems much more
intuitive than classical ad-hoc queries.

For describing the interdependence of data in a multidimensional database,
data cubes are regarded as an appropriate data model. In a data cube, each axis
is associated with a dimension (e.g., time, space, or products) and its according
values. Then, points in the cube (called cells) can be associated with values
(called measures) of additional dimensions (like sales volumes). Displaying
information to the user as well as navigation in this information are tasks that
are heavily supported by this data model. In order to consolidate and analyse
huge amounts of data, aggregation and roll-up play an important role. Data is
often summarized at various levels of granularity and on various combinations
of attributes. Therefore, queries are more complex and may take long time to
complete. To face up to this problem, a great deal of effort has been invested in
developing techniques for optimizing queries involving views and aggregate
functions (Harinarayan&al 1996, Gray&al 1996, Ho&al 1997, Levy&al 1996,
Ross&al 1994).

Unfortunately, a unifying framework for multidimensional databases is still
missing. Hence, different multidimensional models, operators, techniques, etc.
cannot be compared to each other or evaluated. Furthermore, there is a certain
lack of common vocabulary and common understanding of multidimensional
data models. In this paper, we propose an object-centered framework for
multidimensional data models to overcome this lack. The language proposed
allows to capture more of the semantics of multidimensional data models at the
conceptual level. It facilitates the modeling and understanding of
multidimensional databases and related operations, by using a vocabulary which
is appropriate for the problem domain. It also allows the use of cube operations
by making it easier for the user to interpret them. This work integrates
formalisms that have been developed for Data Warehouse (Agrawal&al 1997,
Gray&al 1996, Ho&al 1997) and in knowledge representation (Borgida 1992,
Borgida 1995, Baader&Hanschke 1991, Brachman&Schmolze 1985, Schmidt-
Schauss&Smolka 1991). It is a first step towards the development of a
framework which

1) is equipped with well-defined semantics and
2) allows the precise definition of relevant reasoning services and problems.
This is a prerequisite for the investigation of these problems with respect to
their complexity and the comparison of different reasoning techniques.
The framework presented in this paper is based on description logics, a

family of formalisms which have already proved their usefulness as unifying
framework for object-centered representation formalisms
(Brachman&Schmolze 1985, Calvanese&al 1994). These formalisms are
equipped with well-defined semantics and sound and complete reasoning
algorithms. In fact, a main characteristic of these formalisms is that problems
like satisfiability, containment or consistency are effectively decidable. Finally,
they can be equipped with a kind of interface to specific ''concrete domains''
(e.g., integers, strings, reals), and built-in predicates (Baader&Hanschke 1991).

To serve as a framework for multidimensional data model, we will describe
data cubes within a description logic. We build on works by Agrawal et al.

(Agrawal&al 1997) and Baader and Hanschke (Baader&Hanschke 1991) to
develop a description logic that takes into account the basic operators on cubes.
Like (Agrawal&al 1997), operators are defined on cubes and produce cubes.
Thus, we can define classes of cubes and build new cubes from already existing
ones using operators like join, restrict, aggregate, etc. Finally, we can ask
whether a class of cubes is contained in another one or whether it can ever be
instantiated.

Paper outline: Section 2 gives an example illustrating the features of a data
cube. Section 3 summarizes description logics. In Section 4, we present the
syntax and declarative semantics of our language based on ALC(D)
(Baader&Hanschke 1991). We also give examples to illustrate the use of
operators at the assertional level. We conclude in Section 5 by highlighting
some perspectives.

2. EXAMPLE

Consider the following fragment (Figure 1) of a database that contains a
report of car sales. This example is drawn from (Gray&al 1996) with some
modifications. It presents the number of cars sold with respect to a car's model,
(construction-)year, and color. We use this database extract as a running
example throughout this paper.

Model Year Color Units

M1 1995 White 70
M1 1995 Black 35
M1 1996 White 50
M1 1996 Black 62
M2 1995 White 55
M2 1995 Black 80
M2 1996 White 60
M2 1996 Black 85
M3 1995 White 35
M3 1995 Black 22

Figure 1. A relational representation of car sales relation

Trying to compare the sales of white cars in 1996, it becomes obvious that it
is difficult to extract and analyze information from this table. There is an
alternative way of representing the same data which overcomes this problem of
jumping between rows. That representation is commonly known as a data cube.
It is a cube with three intersecting 2D cross tabs. In this representation, each
axis is associated with a dimension, that is a column of a relational table.

Elements within a dimension are called positions. Points in a data cube are
called cells, and each cell is associated with the corresponding element of the
column unit. Then, the cube is said to have dimensions model, (construction-
)year, and color, and to have the measure unit. The data in this representation is
more organized, hence it is more easily accessible than the organization offered
by a relational table. Note that the cube representation is only possible because
the number of units sold is uniquely determined by a car's model, its
construction year and its color.
Multidimensional databases are designed for ease and performance in
manipulating and analyzing huge amounts of complex data, hence values of
dimensions or measures can be aggregated, decomposed, or combined to new
values. This corresponds to what is commonly known as data consolidation.
(Agrawal&al 1997) defines a set of operators for data consolidation which work
on data cubes. This set of operators is claimed to be minimal and powerful
enough to be used for all interesting queries on data cubes. It contains the
following operators:

1) Push allows to convert dimensions into measures,
2) Pull allows to create a new dimension from a specified measure,
3) Destroy allows to remove a dimension that has a single value in its
domain,
4) Restrict removes from the cube those values of a given dimension
that do not satisfy a stated condition,
5) Join allows to relate information in two cubes,
6) Merge allows to merge cubes by aggregating the values of some
dimensions into new values of the same dimension and by aggregating
the according measures.

3. DESCRIPTION LOGICS

The representation formalism presented in the following belongs to the
family of description logics, hence we first briefly introduce these formalisms.
Description logics (also called concept or terminological logics)
(Brachman&Schmolze 1985) are a family of formalisms designed to represent
the taxonomic and conceptual knowledge of a particular application domain on
an abstract, logical level. So it is not surprising that they are particularly adept
at representing the semantics of real world situations, including data semantics.
They are equipped with well-defined, model-theoretic semantics and most of
them have strong expressive power. Furthermore, the interesting reasoning
problems such as containment and satisfiability are, for most description logics,
effectively decidable.

Description logics are built around concepts, which are interpreted as classes
of objects in the domain of interest, and roles, which are interpreted as binary
relations on these objects. A description logic is mainly characterized by a set of
constructors which allow to build complex concepts and roles from atomic ones.
For example, from atomic concepts Human and Female and the atomic role

child we can build the concept (Human and forall child.Female) which denotes
the set of all Human whose children are all instances of Female. Here, the
constructor and denotes conjunction between concepts, while forall denotes
(universal) value restriction.

A knowledge base in a description logic system is made up of two
components: (1) the Tbox is a general schema concerning the classes of
individuals to be represented, their general properties and mutual relationships;
(2) the Abox contains a partial description of a particular situation, possibly
using the concepts defined in the Tbox. It contains descriptions of (some)
individuals of the situation, their properties and their interrelationships.
Retrieving information in a knowledge representation system based on
description logics is a deductive process involving the schema (Tbox) and
possibly an instantiation (Abox). In fact, the Tbox is not just a set of constraints
on possible Aboxes, but contains intensional information about classes. This
information is taken into account when answering queries to the knowledge
base. The following reasoning services are the most important ones provided by
knowledge representation systems based on description logics (See (Donini&al
1995) for an overview):

1) Concept satisfiability: Given a knowledge base and a concept C, does
there exists at least one model of the knowledge base assigning a non-
empty extension to C?

2) Subsumption: Given a knowledge base and two concepts C and D, is D
more general than C? That is, is in all models of the knowledge base
each instance of C also an instance of D?

3) Knowledge base satisfiability: Are an Abox and a Tbox consistent with
each other? That is, does the knowledge base admit a model?

4) Instance checking: Given a knowledge base, an object o, its possibly
incomplete description, and a concept C, is o an instance of C in all
models of the knowledge base?

4. THE LANGUAGE

In this section, the syntax and semantics of a description logic for the
representation of multidimensional data is introduced. This language is based on
the one presented in (Baader&Hanschke 1991) and extends it by a constructor
that captures functional dependencies (Borgida&Weddell 97) and a set of
operators for the handling of data cubes.

4.1 Basic Definitions

In order to define aggregation appropriately, we first introduce the notion of
multisets: In contrast to simple sets, in a multiset an individual can occur more
than once, this is to say that, for example, the multiset {1} is different from the
multiset {1,1}.

Definition 1 (Multisets) A multiset (or bag) on a set S is a subset M of
S×N such that for every a element of S there is a non-negative integer n (the
number of occurrences of a in M) such that (a, m) is in M if and only if m < n.
The set of all multisets on S is denoted by M (S).

Next, we define an extension of concrete domains (we use concrete domains
as defined in (Baader&Hanschke 1991)) In addition to application-specific
domains (i.e., strings, reals, non-negative integers, etc.), we incorporate built-in
predicates like ≤, ..., functions, and aggregation functions into the abstract
domain of objects.

Definition 2 (Concrete Domains) A concrete domain
 D = (dom(D), pred(D), funct(D), agg(D)) consists of:
- the domain dom(D),
- a set of predicate symbols pred(D), where each predicate symbol P ∈
pred(D) is associated with an arity n and a n-ary relation PD ⊆ dom(D)n,
- a set of 2-ary function symbols funct(D), where each function symbol f ∈
funct(D) is associated with a function fD : dom(D)2 → dom(D), and
- a set of aggregation symbols agg(D), where each aggregation symbol Σ ∈
agg(D) is associated with an aggregation function ΣD : M (dom(D)) → dom(D).

In the following, we define our extension of the description logic ALC(D) as
presented in (Baader&Hanschke 1991). ALC(D) itself is an extension of ALC,
introduced in (Schmidt-Schauss&Smolka 1991), a well-known description logic
with high expressive power. In ALC, concepts can be built using boolean
operators (i.e., and, or, not), and value restrictions on those individuals
associated to an individual via a certain role (binary relation). These include
existential restrictions like in (exists has_child.Girl) as well as universal
restrictions like (forall has_child.Human). Additionally, in ALC(D), (abstract)
individuals which are described using ALC can now be related to values in a
concrete domain, like, for example, the integers or strings. This allows us to
describe, for example, persons whose savings balance are higher than their
yearly income, by Human and (savings > y_income).

In (Baader&Hanschke 1991), it is shown that all interesting inference
problems for ALC(D) are decidable provided that D does not contain any
aggregation function and n-ary functions, and satisfies some additional very
weak conditions.

4.2 The Concept Language

In this subsection, we propose to extend ALC(D) with a constructor that
captures functional dependencies (Borgida&Weddell 1997) and operators on
cubes specified at the extensional level. The language resulting from the

extension of ALC(D) with a functional dependency operator and cube operators
at the extensional level will be called ALC(D)fd.

We start with the definition of complex concepts, which are constructed
using certain operators. These concepts can be used to specify the terminology
in a so-called TBox. This TBox can be viewed as an encyclopedia in which the
meaning of certain concepts is defined using other concepts (which are possibly
defined themselves in this TBox). Then, a specific situation can be described in
a so-called ABox, possibly using the concepts defined in the TBox. In the
ABox, we introduce some individuals, describe their properties and their
interrelationships.

Definition 3 (Syntax of ALC(D)fd - concepts) Let NC, NR, and NF be
disjoint sets of concept, role, and feature names, and let D be an admissible1

concrete domain. Then each concept name is a concept, and complex concepts
are defined inductively by the following rules, where C, D are concepts, R
denotes a role name or feature name, P ∈ pred(D) is a n-ary predicate name, u1,
..., un are feature chains (A feature chain u = f1 •...• fn is a composition of
features), f, f1, ..., fn are feature names. Then the following expressions are also
concept terms:

1. C or D (disjunction), C and D (conjunction), and not(C) (negation),
2. exists R. C (exists-in restriction) and forall R.C (value restriction),
3. P(u1, ..., un) (predicate restriction),
4. [fd C {f 1 ... fn} f] (functional dependency).

A terminology (or TBox) T is a (finite) set of concept definitions, each of
the form A = C where A is a concept name and C a complex concept. We
restrict our attention to those terminologies where each concept name A occurs
at most once on the left hand side of a concept definition, and which does not
contain definitional cycles.

An Abox A is a (finite) set of assertions. Given a set of individual names NI,
assertions are of the following forms:
a:C, (a, b):R, (a, b):f, (a, x):f, (x1, ..., xn):P,
a=rename(b, f, g), a=destroy(b, f), a=restrict (b, C), a=join (b, c),
a=Join((b, c, <n1, o1, f1, g1>, ..., <nm, om, fm, gm>), a= aggr(b, f, Σ, g).
for (possibly complex) concepts C, feature names f, fi, g, gi, ni, role name R,
function names oi ∈ funct(D), an aggregation function Σ ∈ agg(D), (abstract)
individuals a, b, c ∈ NI, a n-ary predicate name P, and elements of concrete
domain x, x1, ..., xn.

The semantics of these constructs is now defined in a model-theoretic way.

Definition 4 (Semantics) Let D be an admissible concrete domain. The
semantics is then given by an interpretation I = (∆I, .I), which consists of an

1 A concrete domain D is admissible iff (1) pred(D) is closed under negation and contains a unary
predicate name TopD for dom(D), and (2) satisfiability of finite conjunction over pred(D) is
decidable.

(abstract) interpretation domain ∆I disjoint from the concrete domain dom(D),
and an interpretation function .I. The evaluation function .I associates each
concept C with a subset CI ⊆ ∆I, each role R with a binary relation RI ⊆ ∆I×∆I,
and each feature name f with a partial function f I from ∆I into (∆I ∪ dom(D)).
Additionally, I has to satisfy the following equations:
(C and D)I = CI ∩ D I

(C or D)I = CI ∪ D I

not(C) = ∆I - CI

(forall R.C)I = {x ∈ ∆I such that for all y, if (x, y) ∈ RI then y ∈ CI}
(exists R.C)I = {x ∈ ∆I such that there exists y, with (x, y) ∈ RI and

y ∈ CI}
P(u1, ..., un)

I = { x ∈ ∆I such that ((u1)
 I(x), ..., (un)

 I(x)) ∈ PD }
[fd C {f 1 ... fn} f] = { x ∈ ∆I such that for all y ∈ CI, if (f I

1(x) = fI

1(y) ∧ ...
 ∧ fI

n(x) = fI

n(y)) then fI(x) = fI(y)}

A concept C is satisfiable iff there exists an interpretation I such that CI ≠ {}.
Such an interpretation is called a model of C. A concept C is subsumed by a
concept D (written C< D) iff CI ⊆ DI holds for each interpretation I .
An interpretation I satisfies a TBox T iff I satisfies each concept definition in T,
and it satisfies a concept definition A=C iff AI=CI.

If (a, b) ∈ RI or f I(a)=b, we say that b is an R-filler (resp. f-filler) of a.
Interpretations of ABoxes, additionally, associate each individual name a to an
element of ∆I, in such a way that aI ≠ bI holds for two different individual names
a, b. Again I satisfies an Abox A iff I satisfies each assertion in A , that is to
say

aI ∈ CI for each a:C ∈ A
(aI, bI) ∈ RI for each (a, b):R ∈ A
fI(aI) = bI for each (a, b):f ∈ A
fI(aI) = xI for each (a, x):f ∈ A
(xI

1, ..., x
I

n) ∈ PD for each (x1, ..., xn):P ∈ A

The semantics of assertions containing operators like destroy or join is
more difficult and will first be illustrated by examples and then given formally.

An ABox A is said to be consistent with a TBox T iff there exists a model
for both, that is an interpretation I satisfying A and T.

Note that the description of individuals in an ABox needs not to be
complete: A model of an ABox might have more elements than those explicitly
mentioned, and the individuals mentioned in the ABox might have more
properties than those explicitly stated in the ABox. This is due to the so-called
Open World Assumption.

Example (cont.) Using ALC(D)fd cubes containing information on car sales can
be described by the following concept definition:

carsales = forall has_cell.(exists model.Model and exists year.INTEGER and
exists color.STRING and exists unit.INTEGER and [fd carsales {model, year,
color} unit])

where has_cell is a role name and model, year, color, and unit are feature
names. Model can be seen as a primitive concept containing the different
models of cars. Concrete domains needed in this example are INTEGER and
STRING.

4.3. Semantics of Cubes Operators

The operators for which we are going to define the semantics make sense
only for ''cubes'', which have been introduced only informally so far. In general,
a cube is an object which is associated to cells which are all of similar form.
This fact of being of the same form is described by the following concept cube.
It is defined in such a way that, if a cell of an instance of cube has an f-filler for
some feature name f, then all other cells have also f-fillers:

cube = andf ∈ NF((exists has_cell.(exists f.ALL or TopD(f))) ⇒ (forall
has_cell.exists f.ALL))

where C ⇒ D is used as shorthand for (not(C) or D) and ALL is a shorthand for
the ''universal'' concept (A or not(A)) (A is a concept name). Given that-for
each specific application-the set of feature names (NF) is finite, cube is a
concept and describes cubes according to our intuition. For the formal definition
of the operators, further abbreviations are useful:

Definition 5 Let x,y be cubes in I. Then cells(x) := {y ∈ ∆I such that (x, y) ∈
has_cellI }. We say x, y are disjoint if x ≠ y and they do not share cells. More
formally disj(x, y) iff x ≠ y and cells(x) ∩ cells(y) = {}. In the sequel, we will
use R for a role name or a feature name, and
RI (a) as shorthand for all R-fillers of a, i.e. RI(a)={b ∈ ∆I∪ dom(D) such that
(a,b) ∈ RI }.

Now we are ready to define the semantics of the operators. The intuition
behind each operator is first given by an example and then defined formally. In
general, so that I satisfies an assertion of the form x = op(y, ...), there has to
exist a mapping π from the cells of x into the cells of y. Further properties of the
mapping π depend on the kind of operator and its parameters.

Example 1 We want to restrict the cube car_sales (Figure 3) to those cells
containing information about cars built in 1996 and for which at least 50 units
were sold. The corresponding assertion is:

car_sales_yur = restrict (car_sales, =1996(year) and >50(unit)).
Here =n stands for the unary predicate which tests for equality with n and >n

stands for the unary predicate which tests for being greater than n.

1. Definition 4 (cont. 1) An interpretation I satisfies an assertion x =
restrict (y,C) iff disj(x, y) and there exists a mapping π such that

 π : cells(y) ∩ CI → cells(x) is bijective and
 ∀c ∈ cells(y) ∩ CI, ∀R: RI(c)=RI(π(c)).

Example 2 The dimension year in the cube car_sales_yur has a single value
in its domain. So, we can remove this dimension without loosing any
information or destroying functional dependencies. The corresponding assertion
is: car_sales_yur_96 = destroy(car_sales_yur, year)

2. Definition 4 (cont. 2) An interpretation I satisfies an assertion x =
destroy(y, f) iff disj(x, y), and for all z, z’ ∈ cells(y) it holds fI(z) = fI(z’), and
there exists a mapping π such that

π : cells(y) → cells(x) is bijective and
 ∀c ∈ cells(y): fI(π(c)) is undefined and ∀R if R ≠ f then RI(c) = RI(π(c)).

Note that an arbitrary feature f can be destroyed from a cube x even if not all
cells in x have the same f-fillers. In this case, by applying destroy, (1) we really
loose information and (2) might have different cells ci whose remaining fj-fillers
coincide.

Example 3 Suppose we have given the cube car_sales, and another cube
car_prices containing information about a car's price with respect to its model
and its construction year. If we want to enhance the car_sales by the prices of
the cars, we can do this by: car_sales_prices = join (car_sales, car_prices).

3. Definition 4 (cont. 3) An interpretation I satisfies an assertion x = join (y,
y') iff disj(y, y'), disj(x, y), disj(x, y'), and there exists a mapping π such that

π : common(y, y') → cells(x) is bijective and
 ∀(c, d) ∈ common(y, y') ∀R: RI(c) ∪RI(d) = RI(π(c,d)).
where common contains all pairs of cells of y and y' agreeing on all common
features in y and y', i.e.,
common (y, y') := {(c, d) ∈ cells(y)×cells(y') such that ∀f ∈ NF: c ∉ dom(fI) or

d ∉ dom(fI) or fI(c) = fI(d)}.
where dom(fI) is the domain of fI, i.e. dom(fI) = {x∈∆I such that fI(x) is
defined}.

Hence for this join operator the features on which the cubes are joined are
those which occur in both input cubes. If one wants to use join in a different

way, one may use the operator rename on the input cubes to change the feature
names:

An interpretation I satisfies an assertion x = rename(y, f, g) iff disj(x, y),
and there exists a mapping π such that

π : cells(y) → cells(x) is bijective and
 ∀c ∈ cells(y) ∀R: RI(c) = R[f → g]I(π(c)),
where R[f → g] = R if R ≠ f and R[f → g] = g if R = f.

Example 4 Suppose we have the same cube car_prices as in the previous
example, but instead of just adding the prices of the cars to car_sales, we want
to see the sales volumes for each model, color and year besides the number of
units sold. To enhance car_sales by the sales volumes of the cars, we need a
more powerful form of the join operator, namely one which takes additional
functions. The above example can then be obtained by:
car_sales_volumes = Join (car_sales, car_prices, < volumes, mult, units,
price>), where volumes is a feature name that does not occur neither in
car_sales nor in car_prices. For each cell in car_sales_volumes, its volumes-
filler is the product of the unit- and price-filler of the according cells in
car_sales and car_prices.

4. Definition 4 (cont. 4) An interpretation I satisfies an assertion x = Join(y,
y', < n1,o1,f1,g1>, ..., <nm, om, fm, gm>) iff disj(y, y'), disj(x, y), disj(x, y'), and there
exists a mapping π such that

π : common(y, y') → cells(x) is bijective and
 ∀(c, d) ∈ common(y, y')

∀1≤ i ≤ m; nI

i(π(c,d)) = oi(f
I

i(c), gI

i(d)) and
∀R if R ≠ {f 1, ..., fm, g1, ..., gm} then RI(c) ∪RI(d) = RI(π(c,d)).

Example 5 Finally, suppose we want to compute the number of units sold
for each model and each year. This can be done using the operator aggr in the
following way: car_sales_total_year = aggr(car_sales, unit , sum, color)

The operator aggr takes, besides the name of the cube, three parameters:
The feature unit whose fillers are aggregated using the aggregation function sum
∈ agg(D), and the feature color which does no longer occur in the output cube
since we have summarized all cells regardless of their color-fillers.

5. Definition 4 (cont. 5) An interpretation I satisfies an assertion x = aggr(y,
f, Σ, g) iff disj(x, y), and there exists a mapping π such that

π: maxss(y, f, g) → cells(x) is bijective and ∀c ∈ cells(x): c ∉ dom(gI) and
fI(c) = Σ fI(c’) (for c’ ∈ π-1(c)) and ∀R: if R ∉ {f, g} then
RI(c) = RI(c’) for some c’ ∈ π--1(c),

where maxss contains all maximal subsets of cells of y which agree on all
features but f and g, i.e.,
maxss(y, f, g):= { S ⊆ cells(y) such that ∀c, c’ ∈ S ∀R if R∉{f, g} then RI(c) =
RI(c’) and ∀d ∉ S ∃c ∈ S ∃R ∉ {f, g} with RI(d) ≠ RI(c)}

5. SUMMARY

We presented a new approach for modeling multidimensional databases. We
provided in particular the syntax and the declarative semantics of an object-
centered formalism. The description logic ALC(D) is extended by a set of
operators that work on cubes, for example for aggregating information and
functional dependencies. Aggregation functions are not restricted to a fixed set,
we allow for arbitrary ones. We want to distinguish between the internal
representation of a cube and its visualization. Given an instance c of cube as
described above, c can contain much more information than what can be shown
in one single cube. In order to visualize the information contained in c, one has
to choose at most 3 dimensions d1, d2, d3 plus n measures fi. Then, this part of
the information contained in c can be visualized as cube representation provided
that <f1, ..., fn> is functionally dependent on d1, d2, d3. The push and pull
operators take a cube and transform dimensions into measures and vice versa. In
our approach, this can be reduced to asking for a different visualization.

The framework presented here is sufficiently flexible to admit with relative
ease the introduction of new description constructors, which can be application
specific.

Since this work is a first approach to an object-centered representation of
multidimensional data models and the according operators, there remain some
open questions and further work to be done: Until now, we have only defined
the interesting reasoning problems like satisfiability, containment, consistency.
This is a first step towards the investigation of the complexity of these problems
and the design of suitable algorithms for them. We are currently working on a
mechanism for the declarative specification of hierarchically structured
dimensions like time, region, or product groups.

6. REFERENCES

Agrawal R. and Gupta A. and Sarawagi S. (1997) Modeling Multidimensional
Databases. Proceedings of the International Conference on Data Engineering
(ICDE'97), Birmingham, UK. Also available as Research Report via WWW at
http: //www.almaden.ibm.com/cs/people/ragrawal/pubs.html/#olap.

Baader F. and Hanschke P. (1991). A Scheme for Integrating Concrete Domains
into Concept Languages. Proceedings of the 12th International Joint Conference
on Artificial Intelligent (IJCAI'91), Sydney, Australia, pp. 452-457.

Borgida A. (1992). From Type Systems to Knowledge Representation: Natural
Semantics Specifications for Description Logics. Intelligent and Cooperative
Information Systems, V. 1, N. 1, pp. 93-126.

Borgida A. (1995). Description Logics in Data Management. IEEE Transactions
on Knowledge and Data Engineering (TKDE).

Borgida A. and Weddell G. (1997). Adding Functional Dependencies to
Description Logics. Proceedings of the fifth International Conference on
Deductive and Object-Oriented Databases (DOOD'97), Montreux, Switzerland.

Brachman R.J. and James G. Schmolze J.G. (1985). An Overview of the KL-
ONE Knowledge Representation System. Cognitive Science, V. 9, N. 2, pp.
171-216.

Calvanese D. and Lanzerini M. and Nardi D. (1994). A Unified Framework for
Class Based Representation Formalisms. Proceedings of the fourth International
Conference on Principles of Knowledge Representation and Reasoning
(KR’94), Bonn, pp. 109-120.

Donini F. M. and Lenzerini M. and Nardi D. and Schaerf A. (1995). Reasoning
in Description Logics. Foundation of Knowledge Representation, Cambridge
University Press.

Gray J. and Bosworth A. and Layman A. and Pirahesh H. (1996). Data Cube: A
Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-
Totals. Proceedings of the 12th International Conference on Data Engineering
(ICDE'96), New Orleans, USA, pp. 152-159.

Harinarayan V. and Rajaraman A. and Ullman J.D. (1996). Implementing Data
Cubes Efficiently. Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data (SIGMOD'96), Montreal, Canada, pp. 25.

Ho C.-T. and Agrawal R. and Srikant R. (1997). Range-Sum Queries in Data
Cubes. Proceedings of the 1997 ACM SIGMOD International Conference on
Management of Data (SIGMOD'97), Tucson, Arizona, USA.

Levy A.Y. and Mumick I.S. and Sagiv Y. (1996). Range-Sum Queries in Data
Cubes. in Proceedings of the International Conference on Extending Database
Technology (EDBT'96), Avignon, France..

Schmidt-Schauss M. and Gert Smolka G. (1991). Attributive Concept
Descriptions with Complements. Artificial Intelligence, V. 48, N. 1, pp. 1-26.

Ross K.A. and Srivastava D. and Stuckey P.J. and Sudarshan S. (1994).
Foundations of Aggregation Constraints. Proceedings of the Second
International Workshop on Principles of Constraint Programming (PPCP'94),
Orcas Island, WA, pp. 193-204, Springer-Verlag, LNCS 874.

