Benefits of an Object-Oriented Multidimensional
Data Model

Alberto Abellé (%), José Samos (%), and Félix Saltor (%)

(9) U. Politécnica de Catalunya (UPC), Dept. de Llenguatges i Sistemes Informatics
{aabello,saltor }@Isi.upc.es
() U. de Granada (UGR), Dept. de Lenguajes y Sistemas Informaticos
Jjsamos@ugr.es

Abstract. In this paper, we try to outline the goodness of using an O-O
model on designing multidimensional Data Marts. We argue that mul-
tidimensional modeling is lacking in semantics, which can be obtained
by using the O-O paradigm. Some benefits that could be obtained by
doing this are classified in six O-O-Dimensions (i.e. Classification/Ins-
tantiation, Generalization/Specialization, Aggregation/Decomposition,
Caller/Called, Derivability, and Dynamicity), and exemplified with spe-
cific cases.

Key Words: Object-Oriented Data Model, Semantics, Multidimension-
ality, Data Marts

1 Introduction

Data warehousing is a relatively new research area. W. Inmon is considered
the father of the “Data Warehouse” (DW), whose definition can be read in
[Inm96]: ”A data warehouse is a subject oriented, integrated, non-volatile, and
time variant collection of data in support of management’s decisions”. Note
that the definition does not refer to the size of the warehouse. However, if it is
integrated and we assume that its scope is the whole corporation, it will contain
a huge volume of data. Smaller storage systems, called “Data Marts” (DMs),
with the same characteristics but devoted to satisfy the needs of a reduced set of
users, are defined in order to improve response times. The DMs are customized
to obtain good query performance (most of times by means of a query-driven
design).

Closely related to the DMs are OLAP (On-Line Analytical Processing) ap-
plications, which, as said in [Pen99], are intended for “Fast Analysis of Shared
Multidimensional Information” by using the data contained in DMs. Multidi-
mensionality is just a design technique that separates the information into facts
(what we want to analize) and dimensions (what we use to analize the facts).
It gives rise to schemas with star shape (like that one depicted in figure 1(a)),
having the abstraction representing the facts in the middle, and the analysis
dimensions around it. The fact in a multidimensional schema is the entity con-
taining the measures to be analyzed (mainly numeric attributes). The analysis

Ky
O
<
Time
(]
o
o
Sales
Product Place
Time
(a) Star schema (b) Cube metaphor

Fig. 1. Multidimensional modeling

dimensions are the points of view that will be used to analyze the fact, and
mainly contain descriptive attributes that describe it. Frequently, the “Data
Cube” metaphor (depicted in figure 1(b)) is used to explain multidimensional-
ity. Each cell in the cube represents a unit of data (for instance, in the example
above, Sales as the intersection of a Product, Place, and Time). A given posi-
tion in every analysis dimension, by defining a position in the space, allows you
to select exactly one of those cells. This kind of representation is close to the
analysis concepts, and eases the usage of the data by final users.

Multidimensional modeling tries, on the one hand, to make the data schemas
understadable to final users, and on the other hand, to improve query perfor-
mance. The way to do it is by simplifying the data schemas, so that they only
contain the essential things (i.e. a fact to be analyzed and its analysis dimen-
sions). These schemas are close to the analysts conception of data, and suggest
a specific kind of queries, so that the system can be easyly customized to solve
them with good response times.

One of the main focus of data warehousing and OLAP literature is on im-
proving query response times. Always having performance on mind, the direct
design of logical (usually Relational) schemas, skipping conceptual modeling, is
well accepted. A survey of logical models is in [VS99]. Very few publications
recognize the importance of conceptual design in this area. The existence of
one fact table related by foreign keys to other flat, denormalized tables (one for
each analysis dimension) is encouraged in the literature (see [Kim96]). By de-
normalizing the dimension tables, unnecessary joins are avoided, adding a little
redundancy (with regard to the size of the fact table). However, other people
argue for some kind of conceptual modeling (usually by means of E/R, like
[GMRY8], [SBHDY9], [TBC99]). Others even propose the usage of semantically
richer models (e.g. description logics in [HS97], or O-O in [Fir97], [TP98]).

Leaving aside the importance of performance, and paying special attention to
conceptual design, in [AOSS00], we proposed a seven layers conceptual schemas
architecture to integrate the DW in a federation of databases. Tt allowed us to
see everything in a different context. Since [SCGS91] found O-O models as good
“Canonical Data Models” for a federation (from a semantical point of view), we
suggested the usage of a multidimensional O-O model to conceptually design
the DMs. In next sections, we go further discussing the advantages of using the
0-0 paradigm in multidimensional design. In this paper, we are not proposing a
new multidimensional model. The aim is just to outline how the O-O paradigm
could be used to help multidimensional modeling by giving some examples.

User Model
External schema

O-0O Multidimensional

Mode Conceptua Schema

Logical Model

(ROLAPIMOLAP) Database Schema

W

Fig. 2. Three-level schemas

In figure 2, it can be seen the level where the discussion is located. We are not
interested neither in the best user model, nor the best kind of database to use
(either ROLAP -Relational OLAP-, MOLAP -Multidimensional OLAP-, or even
O3LAP -Object Oriented OLAP- presented in [BSH98] could be good). What we
want is to present the benefits of an O-O data model to integrate the different
multidimensional views and keep the semantics of the data at the conceptual
level. If the user wishes to use a different one, it could always be translated to
the desired model (maybe due to the tools being used). The same can be said
about the internal level, the usage of an O-O multidimensional model does not
imply we are storing the data in an O-O database.

Probably, the most important advantage of conceptualizing (multidimension-
aly or not) the Universe of Discurs (UoD) by means of an O-O model is that the
result is closer to the user conception. It reflects people’s way of thinking. Every
object or class modeled will have a correspondence with some UoD entity, mak-
ing it quite easy to be understood. We can find other, not that abstract, benefits
in the O-O paradigm, like the usage of Object Identifiers (OIDs), that solves
the identification problem of being using keys; the allowance to use Non-First
Normal Form (NF?), which means the design of objects containing non-atomic
values; semantics, an Object-Oriented model is semantically richer than others
(for instance E/R or Relational); or even its proximity to Object-Oriented Soft-
ware Engineering, which, for instance, eases some specific tasks like designing a
Distributed Object System.

This paper is structured as follows: in section 2, six O-O-Dimensions (i.e.
Classification /Instantiation, Generalization /Specialization, Aggregation/Decom-
position, Caller/Called, Derivability, and Dynamicity) are presented, and their
usage in multidimensional modeling, one by one, is exemplified; the paper ends
with some conclusions, acknowledgements, and references.

2 Benefits by O-O-Dimension

“Expressiveness” or “Semantic Power”, as it is defined in [SCGS91], is the de-
gree to which a model can express or represent a conception of the real world. Tt
measures the power of the structures of the model to represent conceptual struc-
tures, and to be interpreted as such conceptual structures. The most expressive
a model is, the better it represents the real world, and the more information
about the data gives to the user.

In [Sal96], there were enumerated six O-O-Dimensions (i.e. Classification/Ins-
tantiation, Generalization/Specialization, Aggregation/Decomposition, Derivabil-
ity, Caller/Called, and Dynamicity). Each one of these O-O-Dimension adds a
little of Semantic Power to a data model. We are going to see how each one of
them helps multidimensional modeling, by allowing to represent different rela-
tionships among data.

Along these sections, we call nexus any relationship (tagged or not) between
two objects. Usually, it is graphically represented by arrows. The nexus are
specialized for every one of the O-O-Dimension to obtain the different meanings.

2.1 Classification/Instantiation

This O-O-Dimension distinguishes between the occurrences and the schema.
Every instance is related to, at least, a class in the schema by nexus in this
0O-O-Dimension. All instances sharing some attributes, and representing related
concepts are grouped into a given class. In the same way, all elements in a schema
(i.e. classes, nexus, ...) representing related concepts in a data model are grouped
into a metaclass. To finish the recurrence, all metaclasses can be grouped into
exactly one metametaclass, which is instance of itself. Of special interest in this
dimension, present in all data models in one way or another, is the dynamic and
multiple classification, explained in [MO96].

Dynamic classification refers to the ability of the instances to change the
class they belong to. If we want to analize the sales depending on the goodness
of our clients, and we have them classified into different classes, it is a matter of
time we want to move a given client from a class to a different (hopefully better)
one. We cannot delete the instance of the client in the database and create a new
one in the new desired class because we would get a new identity (OID) for it.
That is not what we want to represent, we did not lose a client and found a new
one. Tt was just our consideration (classification) about a client what actually
changed, and that is exactly what the data model should be able to represent.

On the other hand, multiple classification refers to the possibility of hav-
ing an instance classified in more than one class (not related by Generaliza-
tion/Specialization nexus) at the same time. For instance, it is absolutely pos-
sible to have a client as provider at the same time. Since there is not any rela-
tionship between the Clients and Providers classes, we need to have the same
instance classified at both of them (multiply classified).

These characteristics are always desirable. Specifically in the field of data
warehousing, the words “non-volatile” and “time variant”, together with the
OLAP need of analyzing relatively long periods of time, emphasizes their im-
portance. Dynamic and Multiple Classification are really interesting due to the
flexibility needed to represent the big amount of changes present along the long
period of time that uses to be taken into account in analysis tasks.

2.2 Generalization/Specialization

Another O-O-Dimension is that of Generalization/Specialization relationships.
The nexus in this O-O-Dimension relate two classes (or metaclasses). One of
those classes has a more specific meaning than the other. The more general class
is called “Superclass” with regard to the specific one, referred as “Subclass”. As
a consequence of this kind of nexus, we obtain inheritance. That is, the Subclass
inherits the properties and methods of its Superclass (or Superclasses). If it is
allowed to have more than one Superclass, we gain multiple inheritance (a class
inherits from all its Superclasses at a time). Every class will have (besides its
own attributes) the attributes and relationships of each one of its Superclasses.
Note this is absolutely different from Multiple Classification where an instance
is classified in multiple classes.

Role

Clerk™ Sale Time

/1

Client

Payment

[Jp=]

Credit

Fig. 3. Sales example

In figure 3, we can see an example of a multidimensional schema’. It has Sales
as fact, and Clerk, Time, Product, and Client as analysis dimensions. Thus, the
subject of analysis is Sales, and we want to analyze it depending on the clerk
who sold, the moment it was done, the product sold and the client who bought.
Besides that basic information, other details are also represented by means of
nexus in this O-O-Dimension:

— the Sales fact is specialized in two different facts (i.e. Cash, and Credit)
depending on the kind of payment, and

— two analysis dimensions (i.e. Clerk, and Client) are related by generalizing
them in the same class (Person).

Specializing facts, you can generate new data cubes (if they contain any different
data), or, at least, show a criteria to select the facts involved in the analysis. In
our example, if Sales would have different attributes depending on the kind of
payment, we would obtain three different cubes to be analyzed i.e. two containing
the measures specific to each kind of payment, and another one with those
measures shared by both of them. Conversely, if it would not have any other
attribute but those common to both kinds of payment, we could analyze the
Sales cube depending on whether the payment was done by cash, or by credit
card. This could also be achieved by just adding an attribute to the facts, but
it would give a slightly different tint.

With regard to relating two analysis dimensions, it shows a common domain
between them, so that it is allowed to compare the classes, or restrict both at
the same time. In the example, the analyst could formulate queries comparing
instances of Client and Clerk, because the data schema shows both as Subclasses
of the same class (i.e. Person). Moreover, we can consider the possibility of class
Person being used in a different multidimensional schema, which would become
directly related to that of Sales by means of the generalization nexus between
the analysis dimensions. This would point out the relationship between facts,
easing the navigation through the data.

2.3 Aggregation/Decomposition

By means of this O-O-Dimension, it is possible to build new objects as result
of the aggregation of others, which in turn can be aggregations, as well. We
distinguish two different nexus belonging to it. Attending to their strength, a
nexus in the Aggregation/Decomposition O-O-Dimension can denote:

Composition, if the new object is conceived as composed by others, which are
its parts. This is called “Part-Whole Relation” by some authors, and implies
an existence dependency between both sides of the nexus (i.e. the whole
cannot exists without its parts).

! The syntax used in the example schemas along this paper is that of BLOOM99, and
can be found in [AORS99]

Simple Aggregation, if the aggregating objects are just characteristics of the
new one. They could have an existence dependency too, but it is not an
implication of the existence of the nexus itself.

The usage of this O-O-Dimension in multidimensional design is mandatory.
It helps to represent some of the most common situations, and other maybe not
$0 common:

— Firstly, it helps to define the analysis dimension hierarchies by means of
Composition links. A dimension hierarchy must be a lattice with the class
corresponding to the maximum level of detail in the facts at the bottom, and
a class representing the whole set of points in the dimension at the top. In
between, we have other levels corresponding to different data granularities.
For instance, if we collect data hourly, the time analysis dimension would
have Hours class at the bottom, which would compose Days above it, which
would give raise to Weeks and Months, and so forth. The lattice would
be closed at the top by an Fternity class containing exactly one instance
representing all time points in the database. These hierarchies are used to
roll-up the data in the database, augmenting its granularity. Moving a query
up (e.g. rolling-up from days to months) or down (e.g. drilling-down from
months to weeks) along a hierarchy we obtain more or less detail in the data.

— On the other hand, using any kind of aggregation, we can relate either anal-
ysis dimensions classes or facts classes to their attributes. These attributes
will be used to ease the selection of facts to be considered in a given analysis
by allowing to group them depending on the values.

— Nexus between the facts class and the bottom classes in every dimension
hierarchy are aggregation nexus, as well. They can be Composition or Simple
Aggregation nexus, but whether denoting composition or not, a fact will be
identified by exactly one object at each linked analysis dimension (or more
than one if the dimension has more than one nexus with the facts class).
Thus, the nexus with the analysis dimensions will form the class-key of the
facts, and that is what really distinguishes them from other attributes. In
figure 3, we associate a sale with a point in the 4-dimensional space defined by
dimensions Clerk, Time, Product, and Client. Therefore, Sales functionally
depends on those four dimensions.

— Finally, Composition relationships can be found between facts classes. By
reflecting them in the schema, we will allow the navigation between them.

The example in figure 4 depicts two facts classes, sharing some analysis di-
mensions, and related by a Composition nexus. The first facts class is that of
Flight. We are interested in analyzing each flight depending on the time it takes
place, the airline company that owns the plane, and its origin and destination
airports (it is related to the corresponding analysis dimensions by Simple Aggre-
gation nexus). At the same time, we want to analyze the sequences of flights that
give rise to whole trips sold by travel agencies. Trip and Flight being connected
by a composition nexus represents the fact that an instance of Trip is composed
of a set of instances of Flight. Trip is also connected to the corresponding analy-
sis dimensions by Simple Aggregation nexus. Moreover, it is important to notice

Day

Airport ﬂﬁ/ Region

Fig. 4. Traveling example

that two of those dimensions contain more than one class, connected by Com-
position nexus. A Region is composed of a set of Airports, in the same way that
a Day is a set of Times.

In order to keep it simple and understandable, the example does not contain
the nexus representing the attributes of the facts and dimension classes, which
would belong to the Aggregation/Decomposition O-O-Dimension, as well. Be-
cause of the same reason, the four classes at the top of each one of the analysis
dimension hierarchies are not depicted (i.e. in the time dimension, the Eternity
class mentioned above). These classes always exist and contain exactly one in-
stance corresponding to the whole set of instances in the lowest granularity level
of the dimension. Therefore, one can infer them.

2.4 Caller/Called

In O-0O, the objects interchange messages. A class accepts certain kinds of mes-
sages from instances of other classes, which trigger the execution of methods
(i.e. queries, updates, calculations, etc.). The nexus in this Caller/Called O-O-
Dimension, also known as “Behavioural”, show when a class is allowed to invoke
a given method in another class.

As pointed out in [Fir97], Relational entities represent tables, purely pas-
sive containers for data, and since they are not real objects, are independent
of behaviours. The inclusion of methods in the data model helps to model the
behaviour together with the data. It looks like a bad idea to have two differ-
ent, separated models for statics and dynamics. Specifically, in multidimensional
modeling, by associating operations to a domain, we will be able to know which
aggregation functions can be used on a given fact measure. For instance, as
explained in [GMR98], we can find semi-additive attributes (those that are not
additive along one or more dimensions), or non-additive attributes (which are ad-
ditive along no dimension). Temperature should be marked as non-additive (no-
body could call an additive method on it), and Inventory level as semi-additive,
since it cannot always be added (e.g. along Time dimension). It does not imply
that other aggregation operations could be applied on those measures. Therefore,
we need to show the applicability of every different operation.

Moreover, methods facilitate the implementation of complex aggregate func-
tions. In an analysis environment, it is important to keep track of the way the
measures are obtained. It is not advisable to allow the users to implement their
own ad hoc functions. It is error prone, and drive to misunderstandings. O-O
concepts such as inheritance, polymorphism, or encapsulation look really nice at
this point. For instance, suppose we would like to obtain the delay of a flight,
defined as the difference between the expected and real durations (actually, not
a complex function). The problem could arise if the expected duration of the
flight were kept as a time interval. If this is the case, the difference could be
done by subtracting the minimum, maximum, or even midpoint expected dura-
tion, which result in completely different values. Probably, it does not matter
how it is obtained, but we must ensure it is always calculated in the same, easy
to change way to be able to compare the obtained values among different users
or even sessions.

Leaving those considerations aside, this O-O-Dimension is also important
because of security reasons, but that is completely out of the scope of this paper.

2.5 Derivability

“Semantic Relativism” of a data model is defined in [SCGS91] as the degree to
which the model can accommodate not only one, but many different conceptions.
It is really important because since different persons perceive and conceive the
world in different ways, the data model should be able to capture all of them.

The Derivability O-O-Dimension, also known as “Point of View”, helps to
represent the relationships between abstractions in different conceptions of the
UoD. The database does not need to physically keep all those conceptions, but
only their definitions and different relationships among them. In general, it is
not good to store derived data (unless because of performance reasons, not con-
sidered in this paper). What we do really need to store is that derived data exists
and how it is obtained. Here is the importance of this O-O-Dimension. Deriva-
tion mechanisms can be used to easily restructure the schemas to show them in
the way the user wants, in order to be closer to his/her thoughts. Summing up,
it is used to define derived data.

Some analysts do not mind whether a data is atomically stored in the database
or not. In this sense, it is desirable that either derived or atomic measures are
treated equally. However, others would like to know how measures are obtained.
Therefore, the definition of the derived measures should be in the schema of
the database, as Relational views are. It allows either to hide the complexity,
or to know where something comes from, depending on the user needs. At the
same time, as in the Caller/Called O-O-Dimension, this also makes possible that
groups of users have available the same definitions.

In multidimensional modeling, it is specially important to have the powerful
possibilities offered by this O-O-Dimension. When a fact is being analyzed, what
really matters is to be able to see it from as many points of view as possible.
Therefore, it is crucial to have the mechanisms to define those different views
of the data. For instance, all summarized data is related to its detail data by a

nexus in this O-O-Dimension. If we did not have it, we would not have any kind
of summarized data.

Going back to our example in figure 4, we can see that the origin of a Trip
would be derived from the origins of the Flights that compose it, by taking the
first one; destination would be defined in the same way; the duration of a Trip
would be function of the duration and taking off times of the different Flights;
and so on.

2.6 Dynamicity

This O-O-Dimension refers to changes along time. We consider these changes at
three different levels:

Object Objects are created, deleted, and also updated. Keeping the history of
those updates is often referred as “Versioning”.

Class As well as the objects, the data schema can be updated, too. New classes
are created, old ones are deleted, and others just modified in what is called
“Schema Evolution”.

Metaclass In the same way we can modify classes, we can add new metaclasses
(notice we can neither modify nor delete them). This means having an “Ex-
tensible Data Model”.

If we just wanted to represent the current reality, we would not need to consider
Dynamicity O-O-Dimension. However, it is common to need past states. There-
fore, changes need to be kept, and often stamped with some kind of time tag to
know when they happened.

In multidimensional analysis tasks, time is an omnipresent dimension. More-
over, to worsen it, analysts frequently consider a scale of years. If we add how
fast things change nowadays, we can see the importance of this O-O-Dimension
for multidimensional modeling. It is almost impossible to find a business that
has not changed at all in the last three or five years, and those changes must
be reflected in the corresponding information system. Leaving aside changes in
metaclasses, we want to see the need of considering the other two kinds of changes
(i.e. those in objects and classes).

The importance of user requirements makes Schema Evolution an impor-
tant issue. When the user requirements or conceptions change, it is advisable to
change the data schema in accordance with them. A change in a class or nexus
should be shown in the schema by connecting the old an the new version with a
Dynamicity nexus. By doing it, the analist can easily see the available data, and
the meaning of the results he is obtaining. For instance, when the definition of
a derived measure changes, the analyst is able to compare the results using the
new and the old definitions. Moreover, if some attribute is not kept any more,
or a new one is added, the analist can know whether it can be queried or not at
a given point in time.

The problem of changes in the data is referred in [Kim96] as “Slowly Chang-
ing Dimensions”. It arises when attributes in analysis dimension classes are mod-
ified. The old values must be kept, because the facts previous to the change are

probably still related to them, while the new ones will be referred by the facts
occurring from now on. However, both instances represent the same entity in
reality, and it has to be outlined by a nexus between them. Clearly, if an airport
increases its number of tracks, it would be incorrect to analyze the air traffic
previous to the enlargement with regard to the new number of tracks. There-
fore, we need to have two instances of the same airport related by a Dynamicity
nexus showing that they represent the same object.

3 Conclusions

Along the paper we have introduced the problematic of multidimensional mod-
eling. Probably because of the interest of the industry in the subject, it is being
mainly developed in a specially commercial way. This means stressing perfor-
mance, and passing over semantics and conceptual modeling. Multidimensional
semantics are really important because of their proximity to the inherent struc-
ture of the problem domain, but they are not the only ones to be represented.
Other semantics should not be forgotten. It is not enough having an isolated
multidimensional schema reflecting how the user will access the information,
leaving aside the representation of other data relationships.

We have shown the applicability of six O-O-Dimensions (i.e. Classification/Ins-
tantiation, Generalization/Specialization, Aggregation/Decomposition, Derivabil-
ity, Caller/Called, and Dynamicity) to semantically enrich multidimensional
schemas, by exemplifying how they could be used to interelate and integrate
some of those schemas. This is a really important point since most people con-
sider isolated star schemas composed by a central fact table, and different flat,
denormalized dimension tables arranged around it, each one related to the cen-
tral table by a foreign key. That is not a bad idea at all, but we are sure there
is much more information about the data subject of analysis that the schema
could contain, which would be really useful to the analysts, users of the system.

For the sake of simplicity and undertandability, the stars use to be repre-
sented in an isolated manner. We have tried to stress the necessity of providing
a overall view of the data. Multidimensional analysis is used in decision mak-
ing processes. Therefore, the most global view is provided, the more the schema
helps the users. It is really important to offer an integrated vision of the business
or subject of analysis, in order to give the analist a unified set of data instead
of lots of puzzle pieces. We have proposed to relate the puzzle pieces by means
of nexus in the different O-O-Dimensions.

As a future work, we plan to add multidimensional semantics to a semanti-
cally rich data model (i.e. BLOOM, which syntax is described in [AORS99], and
has been used along this paper). Previously, the role of the O-O-Dimensions in
multidimensional design has to be studied in more depth. Moreover, it would be
interesting to find patterns in a semantically rich data schema that suggest the
possibility of a multidimensional analysis.

Acknowledgements

This work has been partially supported by the Spanish Research Program PRON-
TIC under projects TIC99-1078-C02-01 and TIC99-1078-C02-02, as well as the
grant 1998F1-00228 from the Generalitat de Catalunya.

References

[AORS99] A. Abell6, M. Oliva, E. Rodriguez, and F. Saltor. The syntax of BLOOM99

[AOSSO00]

[BSHOS]

[Fir97]

[GMROS]

[HS97]

[Inm96]

[Kim96]
[MO96]

[Pen99]

[Sal96]

schemas. Technical Report LSI-99-34-R, Dept. Llenguatges i Sistemes In-
formatics, Universitat Politeécnica de Catalunya, 1999.

A. Abells, M. Oliva, J. Samos, and F. Saltor. Information System Architec-
ture for Secure Data Warehousing. In Proceedings of the Third Int. Work-
shop on Engineering Federated Information Systems (EFI15°2000), Dublin
(Ireland), June 2000.

J. W. Buzydlowski, I. Song, and L. Hassell. Framework for Object-Oriented
On-line Analytical Processing. In Int. Workshop on Data Warehousing and
OLAP (DOLAP), 1998.

J. M. Firestone. Object—Oriented Data Warehousing. Technical report,
Executive Information Systems, Inc., 1997. White Paper No. Five.

M. Golfarelli, D. Maio, and S. Rizzi. Conceptual Design of Data Warehouses
from E/R Schemes. In Proceedings of the Hawaii Int. Conference On System
Sciences, 1998.

Mohand-Said Hacid and Ulrike Sattler. An object-centered multi-
dimensional data model with hierarchically structured dimensions. In Pro-
ceedings of the IEEFE Knowledge and Data Engineering Workshop, Newport
Beach, CA, USA, pages 65-72. IEEE Computer Society, November 1997.
W. H. Inmon. Building the Data Warehouse. John Wiley & Sons, second
edition, 1996.

Ralph Kimball. The Data Warchouse toolkit. John Wiley & Sons, 1996.

J. Martin and J. Odell. Object-Oriented Methods: Pragmatic Considerations.
Prentice-Hall, 1996.

N. Pendse. The OLAP report. Bussiness Intelligence Ltd., 1999.
http://www.olapreport.com /fasmi.htm.

F. Saltor. Semantica de datos. In Panorama Informdtico, pages 39-64.

Federacién Espanola de Sociedades de Informatica (FESI), 1996.

[SBHD99] C. Sapia, M. Blaschka, G. Hoefling, and B. Dinter. Extending the E/R

[SCGS91]

[TBC99]

[TPIS]

[VS99]

Model for the Multidimensional Paradigm. Lecture Notes in Computer Sci-
ence, 1552:105-116, 1999. ER Workshops 1998.

F. Saltor, M. Castellanos, and M. Garcia-Solaco. Suitability of Data Models
as Canonical Models for Federated DBs. ACM SIGMOD Record, 20(4):44—
48, 1991.

N. Tryfona, F. Busborg, and J. Christiansen. starER: A Conceptual Model
for Data Warehouse Design. In Int. Workshop on Data Warehousing and
OLAP (DOLAP), pages 3-8, 1999.

J. C. Trujillo and M. Palomar. An Object-Oriented Approach to Multi-
dimensional Database Conceptual Modeling. In Int. Workshop on Data
Warehousing and OLAP (DOLAP), 1998.

P. Vassiliadis and T. Sellis. A Survey of Logical Models for OLAP Databases.
ACM SIGMOD Record, 28(4):64-69, December 1999.

