
 1

Data Warehousing and OLAP

Cheung Pui Ling Pauline, Lau Wai Kay Ricky, Lee Tak Wan Angus,
Tsoi Chin Ching Lancelot and Yip Keung Frank

{ cscpl, cpegkay, angus, lance, frank}@ust.hk

Abstract

Data warehousing and on-line analytical processing (OLAP) is becoming an
important tool for decision making in corporations and other organizations. It is one
of the main focuses of the database industry. However, the functions and properties of
decision support system are rather different from the traditional database application.
For example, user of decision support system may be interested in the trend of certain
data instead of the actual data itself. Another feature of data warehouse system is
that the amount of data inside is tremendous, which means that the traditional query
process on these data will be very time consuming. In this survey paper, we will
mainly discuss several techniques used in data warehouse to accelerate the OLAP
process speed.

The rest of paper is organized as follows: Chapter 1 is the introduction, in which we
will give an overview of current technology used in the area of data warehousing and
OLAP. In chapter 2, we will t alk about a new aggregation operator which is called
Data Cube operator. The Data Cube operator can perform N-dimensional
aggregation. From chapter 3, we will begin to discuss one of the most importation is
issue in data warehousing and OLAP. That is view materialization and view
maintenance. In chapter 3, a general introduction to the problems and techniques of
materialized views maintenance will be given. In chapter 4, some techniques
developed base on the space constrain of data warehouse will be discussed. In
chapter 5, we will use a dynamic view management system to discuss the techniques
of dynamic view selection and view maintenance.

 2

Abstract..1

Chapter 1. Introduction ...3

Chapter 2. Data Cube Operator ...6
2.1 Introduction ...6
2.2 Problems with GROUP BY ...6
2.3 CUBE and ROLLUP operators...9
2.4 The Data Cube Operator..10
2.5 Syntax ..10
2.6 Minimalist Design ...13
2.7 Addressing the Data Cube...13
2.8 Computing the Data Cube & Maintaining cubes...14
2.9 Data Cube Summary..14

Chapter 3. Materialized Views and their Maintenance15
3.1 Introduction ...15
3.2 Application of Materialized View ...15
3.3 Materialized View Maintenance..16

Chapter 4. Selection of views to materialize in a Data Warehouse
...19

4.1 Background..19
4.2 Problem..20
4.3 Cost Model ..20
4.4 Existing View Selection Solutions ..20
4.5 View Selection Conclusion..21

Chapter 5. View management system for Data
Warehouses ...22

5.1 Introduction ...22
5.2 Static Selection of View ..22
5.3 Dynamic View Management System : DynaMat ..23
5.4 View Management Conclusion..26

References...27

 3

Chapter 1. Introduction

A data warehouse is a collection of data, which help decision-makers in a corporation
or organization to make better and faster decisions. It collects data from various
sub-branches of the corporation, derived meaningful information from data obtained
from other operational databases using in the sub-branches and other external sources.
For example, a large corporation headquartered at New York has several sub-branches
across the U.S. A data warehouse is located in the headquarter at New York and it
obtains information of sales, customers, suppliers, etc. from the databases in the
sub-branches. The data warehouse can then derived information like trends of sales
of product, etc. Decision-makers in the corporation can use this information to help
making important decisions. The data in a data warehouse are often modeled in a
multidimensional view, which can be easily converted to relational model.

OLAP is the technique to load and transfer data from external sources to the data
warehouses, to derive useful information and to support queries on such kind of
information. OLAP applications are typically query intensive. Operations in
OLAP include rollup, drill -down, slice_and_dice and pivot.

The requirements of data warehouse and OLAP are quite different from those
traditional databases. In traditional databases, tasks are generally based on short and
independent transactions. Consistency and recoverabili ty is a main concern in
traditional databases. It needs to handle up-to-date, accurate and detailed individual
records. It requires hundreds of megabytes to gigabytes of storage capacity.

However, in data warehouse and OLAP need historical, summarized and consolidated
data. The data is collected from certain operational databases and other external
sources. It is query intensive and requiring to handle complex queries with many
scans, joins and aggregates. It requires hundreds of gigabytes to terabytes of storage
capacity.

Figure 1.1 Architecture of typical Data Warehouse system

 4

Figure 1.1 shows the architecture of a typical data warehouse system. There are
tools to extract, transform and load data from data sources such as operational
databases in the corporations and other external sources. The tools will also do
refresh to get up-to-date information to the data warehouse from changes in the data
sources. There is the main data warehouse and some data marts located in regions
nearer to the data sources to share jobs of the main data warehouse for load balancing
and higher availabili ty. The main data warehouse and the data marts are managed by
one or more warehouse servers (OLAP servers). There is a metadata repository and
monitoring and administration system. There are also some front-end tools li ke
analysis tools, query tools and data mining tools.

The OLAP tools can do data cleaning, which means detecting data anomalies in the
data sources and do corrections to them. Data anomalies include inconsistent field
lengths, inconsistent descriptions, inconsistent value assignments, missing entries and
violation of integrity constraints. The OLAP tool for load need to do some
preprocessing before the data is actually stored in the data warehouse. Such
preprocessing includes checking integrity constraints in the warehouse, sorting,
summarization, aggregation, building indices and partitioning data to multiple storage
areas. The tool for refresh is responsible for propagating updates of source data to
the data warehouse.

Figure 1.2 Multidimensional view of data

As the data in data warehouse is often modeled multidimensionally, we need to have a
look at the multidimensional view of data in data warehousing and OLAP. Figure
1.2 shows an example of such a view. We have numeric measures such as sales
figures, which are the main objects of analysis. A set of dimensions, such as time,
city and product, gives the context for the measures. Dimensions are often
hierarchical in nature. For example, the number 50 in the cube shown in figure 2
means that the sales figure of Cola on date 1 is 50 in all the cities.

We can now have a look at some OLAP operations after we have a glance at the
multidimensional view of data in data warehousing and OLAP. Pivoting is to select
2 or more dimensions that are used to aggregate a measure. From figure 2, we can
select the 2 dimensions Product and Date to aggregate the measure sales figures. We
can look at the aggregated sales figures of different product at different date from this

 5

view. The operation rollup is to take the current object and do a further group-by on
one dimension. For example, after we have pivoted for the 2 dimensions Product
and Date, we can have a further group-by on the dimension Product. The result will
be a view of aggregated data of different product in all the dates. The operation
drill -down is just the opposite operation of rollup. The slice_and_dice operation is
to reduce the dimensionali ty of the data. In other words, it is to take a projection of
data on a subset of dimensions for selected values of the other selections. From
figure 2, we can slice_and_dice sales figures for the Product Cream to create a table
that consists of the 2 dimensions City and Date only.

Like in traditional databases, there are some metadata needed to be stored for the
operation of the data warehouse. Metadata for data warehousing and OLAP can be
classified into 3 main types. Administrative metadata is information necessary for
setting up the data warehouse, li ke locations of data sources, locations of data marts,
etc. Business metadata includes business terms, definitions and data ownership, etc.
Operational metadata are information collected during operations, li ke status of data,
and monitoring information, li ke usage statistics and error reports.

Data warehousing is quite a recent field of study among researchers in databases.
Some hot topics in this area include data cleaning, index selections, data partitioning,
materialized vies and data warehouse management.

In later sections, we describe the use of data cube, which is a special data structure
used in data warehousing and OLAP to represent the multidimensional model of data.
We wil l also discuss some techniques used in materialized views selection and
maintenance to speed up queries.

 6

Chapter 2. Data Cube Operator

2.1 Introduction
Data warehousing usually refers huge amounts of data. The data analysis required are
extracting relevant data from the warehouse, aggregating data and analyzing the
results.

Data extraction and aggregation are common in SQL statements. SQL standard
aggregation functions includes COUNT(), SUM(), MIN(), MAX() and AVG(). To
group the results, we use GROUP BY. Some systems allow more different or even
user-defined aggregation functions. Aggregation and grouping of results is widely
used in database benchmarks. They are not only for data warehousing.

This section is based on data cube thesis written by Jim Gray et al. and aims at giving
you an overview of the data cube and data cube operators. It starts with the
Introduction, follows by Data extraction and aggregation in SQL, then introduces the
Problems with GROUP BY and explains the CUBE and ROLLUP operators. After
that, it discusses Computing cubes and Maintaining cubes. Finally, it gives the
Summary.

2.2 Problems with GROUP BY
The GROUP BY relational operator partitions a table into groups. Each group is then
aggregated by a function. The aggregation function summarizes some column of
groups returning a value for each group.

Grouping Values

Partitioned Table

Sum()

Aggregate Values

Figure 2.1

Certain forms of data analysis are diff icult i f not impossible with the SQL constructs.
Three common problems are:
• Histograms
• Roll -up Totals and Sub-Totals for drill -downs
• Cross Tabulations

 7

The first problem is that GROUP BY does not allow direct aggregation over
computed categories. For a table Weather with the following attributes, histograms
would be easy if function values were allowed in the GROUP BY li st. For example, it
would be nice to be able to group times into days, weeks, or months, and to group
locations into areas (e.g., US, Canada, Europe,...) in queries.

Time (UCT) Latitude Longitude Altitude (m) Temp © Pres (mb)
27/11/94:1500 37:58:33N 122:45:28W

����� ��� �������
27/11/94:1500 34:16:18N 27:05:55W

��� ��� �����
	

Table 2.1

If that were allowed, the following query would give the daily maximum reported
temperature.

SELECT day, nation, MAX(Temp)
FROM weather
GROUP BY Day(T ime) AS day,
 Country(Latitude,Longitude)AS nation;

However, Some SQL systems support histograms but the standard does not. Rather,
one must construct a table-valued expression and then aggregate over the resulting
table. The following statement demonstrates this SQL92 construct.

SELECT day, nation, MAX(Temp)
FROM (SELECT Day(Time) AS day,
 Country(Latitude, Longitude) AS nation, Temp
 FROM Weather) AS foo
GROUP BY day, nation;

The second problem is for Roll -Up aggregation or dril l-down reports you have to
store each level i.e. subtotal of the aggregation. Reports commonly aggregate data at a
coarse level and then at successively finer levels. The following report of car sales
shows the idea. Data is aggregated by Model, then by Year, then by Color. The
report shows data aggregated at three levels. Going up the levels is called rolli ng-up
the data. Going down is called dr illi ng-down into the data.
Sales Roll Up by Model by Year by Color

Model

Yea
r

Color

 Sales
 By Model
 By Year
 By Color

Sales
by Model
by Year

Sales
by Model

Chevy 199
4

black 50

 white 40
 90
 199

5
black 85

 white 115
 200
 290

Table 2.2

 8

The above table is not relational –null values in the primary key are not allowed. It
is also not convenient -- the number of columns grows as the power set of the number
of aggregated attributes. The following table is a relational and more convenient
representation where the dummy value "ALL" has been added to fill i n the
super-aggregation items.

Sales Summary
Model Year Color Units
Chevy 1994 black 50
Chevy 1994 white 40
Chevy 1994 ALL 90
Chevy 1995 black 85
Chevy 1995 white 115
Chevy 1995 ALL 200
Chevy ALL ALL 290

Table 2.3

The solution ideas are to add new columns for each combination of aggregated
attributes you are interested in - poor solution, redundant, waste of storage, and to
introduce the 'ALL' value. This value represents the set of all values that exist in a
certain column.

The standard SQL statement to build this Sales Summary table from the raw
Sales data is:

Roll -up is asymmetric while the third problem is, oppositely, related to the symmetric
aggregation result table called the cross-tabulation, or cross tab for short. Building a
cross-tabulation with SQL is even more daunting since the result is not a really a
relational object – the bottom row and the right column are “unusual” . Cross tab data
is routinely displayed in the more compact format as follows:

SELECT Model, ALL, ALL, SUM(Sales)
FROM Sales
WHERE Model = 'Chevy'
GROUP BY Model
UNION
SELECT Model, Year, ALL, SUM(Sales)
FROM Sales
WHERE Model = 'Chevy'
GROUP BY Model, Year
UNION
SELECT Model, Year, Color, SUM(Sales)
FROM Sales
WHERE Model = 'Chevy'
GROUP BY Model, Year, Color;

 9

Chevy Sales Cross Tab
Chevy 1994 1995 total

(ALL)
black 50 85 135
White 40 115 155

 total
(ALL)

90 200 290

Table 2.4

This cross tab is a two-dimensional aggregation. If other automobile models are added,
it becomes a 3D aggregation. For example, data for Ford products adds an
additional cross tab plane.

Ford Sales Cross Tab
Ford 1994 1995 total

(ALL)
Black 50 85 135
White 10 75 85

 total (ALL) 60 160 220

Table 2.5

The cross tab array representation is equivalent to the relational representation using
the ALL value. Both generalize to an N-dimensional cross tab. The representation and
the use of unionized GROUP BYs "solves" the representation problem – it represents
aggregate data in a relational data model. The problem remains that expressing
histogram, roll -up, drill -down, and cross-tab queries with conventional SQL is
daunting. A 6D cross-tab requires a 64-way union of 64 different GROUP BY operators
to build the underlying representation. Incidentally, on most SQL systems this will
result in 64 scans of the data, 64 sorts or hashes, and a long wait. Building a
cross-tabulation with SQL is even more daunting since the result is not a really a
relational object – the bottom row and the right column are “unusual” .

2.3 CUBE and ROLLUP operators
The CUBE operator builds a table with all aggregated values. CUBE is a relational
operator. ROLLUP builds a roll -up of a table, i.e.
v1, v2,..., vn, f()
v1, v2,..., 'ALL', f()
...
v1, 'ALL',..., 'ALL', f()
'ALL', 'ALL',..., 'ALL', f()
where f() is an aggregation function.

 10

2.4 The Data Cube Operator
The CUBE operator is the N-dimensional generalization of simple aggregate functions.
The 0D data cube is a point, the 1D data cube is a line with a point, the 2D data cube
is a cross tabulation, a plane, two lines, and a point and the 3D data cube is a cube
with three intersecting 2D cross tabs.

CHEVY

FORD 1990
1991

1992
1993

RED
WHITE
BLUE

By Color

By Make & Color

By Make & Year

By Color & Year

By Make
By Year

Sum

The Data Cube and
The Sub-Space AggregatesSum

RED
WHITE
BLUE

Chevy Ford

By Make

By Color
Cross Tab

RED
WHITE
BLUE

By Color

Sum

Group By
(with total)

Sum

Aggregate

Figure 2.2

2.5 Syntax
Basic Cube Syntax
Here is an basic CUBE syntax example:

It first aggregates over all the <select list> attributes as in a standard GROUP BY,
then adds UNIONs in each super-aggregate of the global cube which is substituting
ALL for the aggregation columns. If there are N attributes in the select list, there wil l
be 2N-1 super-aggregate values.

SELECT day, nation, MAX(Temp)
FROM Weather
GROUP BY CUBE (Day(Time) AS day,
 Country(Latitude, Longitude) AS nation
);

 11

For the following statement, a 3D data cube (right) is built from the table at the left:

SELECT Model, Year, Color, SUM(sales) AS Sales
FROM Sales
WHERE Model in {'Ford', 'Chevy'}

AND Year BETWEEN 1990 AND 1992
GROUP BY CUBE(Model, Year, Color);

 SALES
Model Year Color Sales
Chevy 1990 red 5

Chevy 1990 white 87

Chevy 1990 blue 62

Chevy 1991 red 54

Chevy 1991 white 95

Chevy 1991 blue 49

Chevy 1992 red 31

Chevy 1992 white 54

Chevy 1992 blue 71

Ford 1990 red 64

Ford 1990 white 62

Ford 1990 blue 63

Ford 1991 red 52

Ford 1991 white 9

Ford 1991 blue 55

Ford 1992 red 27

Ford 1992 white 62

Ford 1992 blue 39

 DATA CUBE
Model Year Color Sales

CUBE

Chevy 1990 blue 62
Chevy 1990 red 5
Chevy 1990 white 95
Chevy 1990 ALL 154
Chevy 1991 blue 49
Chevy 1991 red 54
Chevy 1991 white 95
Chevy 1991 ALL 198
Chevy 1992 blue 71
Chevy 1992 red 31
Chevy 1992 white 54
Chevy 1992 ALL 156
Chevy ALL blue 182
Chevy ALL red 90
Chevy ALL white 236
Chevy ALL ALL 508
Ford 1990 blue 63
Ford 1990 red 64
Ford 1990 white 62
Ford 1990 ALL 189
Ford 1991 blue 55
Ford 1991 red 52
Ford 1991 white 9
Ford 1991 ALL 116
Ford 1992 blue 39
Ford 1992 red 27
Ford 1992 white 62
Ford 1992 ALL 128
Ford ALL blue 157
Ford ALL red 143
Ford ALL white 133
Ford ALL ALL 433
ALL 1990 blue 125
ALL 1990 red 69
ALL 1990 white 149
ALL 1990 ALL 343
ALL 1991 blue 106
ALL 1991 red 104
ALL 1991 white 110
ALL 1991 ALL 314
ALL 1992 blue 110
ALL 1992 red 58
ALL 1992 white 116
ALL 1992 ALL 284
ALL ALL blue 339
ALL ALL red 233
ALL ALL white 369
ALL ALL ALL 941

Figure 2.3

 12

For such a SALES table, it has 2x3x3 = 18 rows while the derived data cube has
3x4x4, i.e. 48 rows. And the respective sets are:

The ALL value appears to be essential, but creates substantial complexity. It is a
non-value, li ke NULL. We do not add it li ghtly – adding it touches many aspects of
the SQL language. As an aside, to be consistent, if the ALL value is a set then the
other values of that domain must be treated as singleton sets in order to have uniform
operators on the domain.

Decoration’s interact with aggregate values. If the aggregate tuple functionally
defines the decoration column value, then the value appears in the resulting tuple.
Otherwise the decoration field is NULL. For example:

And this would produce the sample tuples:
Demonstrating decorations and ALL
day nation max(Temp) continent
25/1/1995 USA 28 North America
ALL USA 37 North America
25/1/1995 ALL 41 NULL
ALL ALL 48 NULL

Table 2.6

The main concern is that unless nation is present, the continent is not
functionally specified and so is NULL.

ROLLUP Syntax
If the application wants only a roll -up or drill -down report, the full cube is overkill .
It is reasonable to offer the additional function ROLLUP() in addition to CUBE().
ROLLUP() produces just the super-aggregates:

(f1, f2, ..., ALL),
...

(f1, ALL, ..., ALL),
(ALL, ALL, ..., ALL).

Cumulative aggregates, li ke running sum or running average, work especially well
with ROLLUP() since the answer set is naturally sequential (linear) while the CUBE()
is naturally non-linear (multi -dimensional). Both the ROLLUP() and CUBE()
must be ordered for the cumulative operators to apply. Here is an ROLLUP syntax
example:

• Model.ALL = ALL(Model) = {Chevy, Ford }
• Year.ALL = ALL(Year) = {1990, 1991, 1992}

• Color.ALL = ALL(Color) = {red, white, blue}

SELECT day, nation, MAX(Temp), continent(nation)
FROM Weather
GROUP BY CCUUBBEE (Day(Time) AS day,
 Country(Latitude, Longitude) AS nation
);

 13

2.6 Minimalist Design
Veteran SQL implementers will be terrified of the ALL value -- li ke NULL, it will
create many special cases. If the goal is to help report writer and GUI visualization
software, then it may be simpler to adopt the following approach.
• Use the NULL value in place of the ALL value.
• Do not implement the ALL() function.
• Implement the GROUPING()function to discriminate between NULL and ALL .

In this minimalist design, tools and users can simulate the ALL value as by for
example:

The global sum will be the tuple:
(NULL, NULL, NULL, 941, TRUE, TRUE, TRUE)

2.7 Addressing the Data Cube
We can considers extensions to SQL syntax to easily access the elements of the data
cube -- making it recursive and allowing aggregates to reference sub-aggregates.
Our task is to make simple and common things easy. The most common request is for
percent-of-total as an aggregate function. In SQL this is computed as two SQL
statements.

SELECT Manufacturer, Year, Month, Day, Color, Model,
SUM(price) AS Revenue

FROM Sales
GROUP BY Manufacturer,
 ROLLUP Year(Time) AS Year,
 Month(Time) AS Month,
 Day(Time) AS Day,
 CCUUBBEE Color, Model;

SELECT Model, Year, Color, SUM(sales),
 GROUPING(Model),
 GROUPING(Year),
 GROUPING(Color)
FROM Sales
GROUP BY CUBE(Model, Year, Color);

SELECT Model,Year,Color,SUM(Sales),
 SUM(Sales)/ (SELECT SUM(Sales)
 FROM Sales
 WHERE Model IN { ‘Ford ’ , ‘Chevy ’ }
 AND Year Between 1990 AND 1992
)
FROM Sales
WHERE Model IN { ‘Ford’ , ‘Chevy’ }
 AND Year Between 1990 AND 1992
GROUP BY CUBE (Model, Year, Color);

 14

It seems natural to allow the shorthand syntax to name the global aggregate:

Another common desire is to compute the index of a value -- an indication of how far
the value is from the expected value. In a set of N values, one expects each item to
contribute one Nth to the sum. So the 1D index of a set of values is:
 index(vi) = vi / (Σj vj)
The current approach to selecting an field value from a 2D cube with fields row and
column would read as:
 SELECT v
 FROM cube
 WHERE row = :i
 AND column = :j
And the simpler syntax with data cube is:
 cube.v(:i, :j)
as a shorthand for the above selection expression. With this notation added to the SQL
programming language, it should be fairly easy to compute super-super-aggregates
from the base cube.

2.8 Computing the Data Cube & Maintaining cubes
CUBE generalizes aggregates and GROUP BY, so all the technology for computing
those results also applies to computing the core of the cube. The main techniques
are for roll -ups sort table on the aggregating attributes to use arrays or hashing to
organize the aggregation columns in memory and to use parallelism to compute
aggregates (if possible) However, computing the 'ALL' tuples and implementing the
'ALL'-values is not trivial.

The available aggregation functions are:
• distributive - COUNT(), MIN(), MAX(), SUM()
• algebraic - Average, standard deviation
• holistic - Median, Rank
Computing a cube with a distributive aggregation function is relatively easy, with an
algebraic function an efficient solution is still possible.

If a cube relation is stored i.e. materialized, updates are needed. The discussion of the
aggregation functions was focused on SELECT, not on UPDATE/INSERT/DELETE.
For example, MAX() is distributive for SELECT and INSERT, but not for DELETE.
The idea is that orthogonal function hierarchies are specified for SELECT, INSERT
and DELETE.

2.9 Data Cube Summary
Data cube is based on the idea of using the ‘ALL’-value for group-by and aggregation.
CUBT operator is a relational operator to simpli fy aggregation, generalizes aggregates,
group-by, rollups and cross tabs. It is easy to compute for distributive or algebraic
functions.

SELECT Model, Year, Color
 SUM(Sales) AS total,
 SUM(Sales) / total(ALL,ALL,ALL)
FROM Sales
WHERE Model IN { ‘Ford’ , ‘Chevy’ }
 AND Year Between 1990 AND 1992
GROUP BY CUBE(Model, Year, Color);

 15

Chapter 3. Materialized Views and their Maintenance

3.1 Introduction
A view is a special display of data. It is a derived relation defined in terms of base
relations. It defines a function from a set of base tables to a derived table and is
typically recomputed every time the view is referenced.

A materialized view is a view whose tuples are actually stored in the database. Then
view access can be much faster, especially if index structures are built . It can also
benefit integrity constraint checking and query optimization. People found
materialized views extremely useful in new type of applications such as data
warehousing, replication servers, chronicle or data recording system, data
visualization, and mobile system.

Materialized views act just like a cache. And they suffer the same problem as cache:
have to be updated when they get dirty, i.e. whenever the underlying base relations are
modified. This update process is called View Maintenance. The process is normally
incremental and only changes to a view are compute in response to changes to base
relations. It is because recomputing a view from scratch is wasteful in most cases.

3.2 Application of Materialized View
1. Any problem domain that needs Fast Access, Lower CPU and Disk Load

By defining and materializing results of complex query over data in large size, each
query can be reduced to a simple lookup on the materialized view.

2. Data Warehousing

Materialized views provide a framework for collecting information from several
databases into the warehouse, without copying each database. And queries on the
warehouse can be answered using the view without accessing remote DBs.

3. Chronicle Systems
Chronicle is ordered sequence of transactional tuples. It can get very large, even
beyond any DB’s capacity. Chronicle systems deal with this kind of stream of
transactional data. Examples are banking, retaili ng and billi ng system.

Materialized views provide a way to answer queries over the chronicle without
accessing it. They can be defined to compute and store summaries of interest over
the chroncle.

4. Data Visualization

Visualization applications display views over the data in a database. Users can
change the view definition anytime, and the display has to be updated accordingly.
By materializing a view and incrementally recomputing it as its definition changes,
the system keeps such application interactive.

5. Mobile System
When a Personal Digital Assistant (PDA) moves and asks a same query regarding
its current location and the environment, computing only the change can reduce
data transmission.

 16

6. Integrity Constraint Checking
Most static integrity constraints can be translate to a view maintenance problem,
since they can be represented as a set of views such that nonempty means violation.

7. Query Optimization

Materialized views are not bound to direct lookup only. It is possible to used it
internally or explicitl y by user to optimize other queries.

3.3 Materialized View Maintenance
Classification of the View Maintenance problem

1. Information Dimension

The amount of information available for view maintenance. E.g.
a) Have access to all base relations
b) Have access to some base relations
c) Have access to the materialized view
d) Have information on integrity constraints and keys

2. Modification Dimension:
Modification types that the algorithm can handle. E.g.
a) Insertion to base relations
b) Deletion from base relations
c) Update base relations directly
d) Update base relations as deletions followed by insertions
e) View definition changes

3. Language Dimension:

The language set used to define the view. E.g.
a) Expressed as a Select-Project-Join (SPJ) query
b) Expressed as some other subset of relation algebra
c) Expressed SQL or subset of SQL
d) Involving Duplicates, Aggregation, or Recursion

4. Instance Dimension

Whether the algorithm work for all data instances and all modification instances.

 17

For simplicity, we may view the problem as in the figure below. It shows the problem
space defined by three of the four dimensions, namely the information, modification,
and language dimensions.

The Main Idea

The main idea is to use the change to the base relations to compute the change to the
view. So most algorithms treat the view definition as a mathematical formula and
apply a differentiation step to obtain an expression for the change in the view.

E.g. Base relation link(S, D): link(a, b) is true if there is a link from node a to b.

View hop(X, Y): hop(c, d) is true if c is connected to d using 2 links
Definition D: hop(X, Y) = ΠX,Y (link(X, V) �� V=W link(W,Y))

Change of link: ∆(link)
Change of hop: ∆(hop)

By mathematically differentiating definition D, we compute ∆(hop) as:

∆ (hop) = ΠX, Y ((∆ (link)(X, V) ��� V=W link(W, Y))
∪ (link(X, V) ��� V=W ∆ (link)(W, Y))
∪ (∆ (link)(X, V) ��� V=W ∆ (link)(W, Y)))

Amount of Info

�����

Integrity Constraints

Other View

Base Relations

Materialized View

Expressiveness of View
Definition Language

Type of Modification

Insertions
Deletions

Updates
Sets of each

Group Updates

Change view definition � � � �

Conjunctive queries

Duplicates

Arithmetic

Aggregati
on

Subqueries

Unio
n

Chronicle Algebra

Outer-Joins

Recursion

Figure 3.1 The Problem space
Notes: No relative order on each dimension

� � � �

 18

Using Full Information

If the view maintenance process have access to all the base relations and the
materialized view, we refer to this information as full information. The focus should
then be on efficient techniques to maintain views expressed in different languages.

1. Algorithms that can maintain Non-recursive Views

a) The counting algorithm
b) Algebraic Differencing
c) The Ceri-Widom Algorithm
d) All algorithms that applied to Recursive Views

2. Algorithms that can maintain Outer-Join Views

a) A algorithm that first user the change of one relation left-outer-join the other
relation, and the use the result of the previous join over the first relation
right-outer-join the change to the second relation.

3. Algorithms that can maintain Recursive Views

a) The DRed (Deletion and Rederivation) Algorithm
b) The PF (Propagation/Filt ration) Algorithm
c) The Kuchenhoff Algorithm
d) The Urpi-Olive Algorithm

Using Partial Information

View may be maintained using only a subset of the underlying relations. We refer to
this information as partial information. Since a view is not always maintainable using
only partial information, algorithms should focus on checking whether the view can
be maintained, and then on how to maintain the view.

1. Using No Infuriation (Query Independent of Update)

The only thing we can do if no information available is to do nothing. However,
algorithms are needed to ensure that it is valid to do nothing according to the
change.

2. Using the Materialized View Only (Self-Maintainable)

Self-Maintainabilit y w.r.t. Insertion and Deletions for SPJ views are
a) Usually not self-maintable w.r.t Insertion
b) Often self-maintainable w.r.t deletions and updates

3. Using the Materialized View and Some Base Relations (Partial-Reference)

Different problem and different availabilit y result in different algorithm. Normally
another algorithm is needed even there is only a slight change in the requirement.
Many algorithms have been proposed to solve different problems. Two interesting
subprograms are when:
a) the view and all relations except the modified relation are available

e.g. Chronicle Views
b) only the view and the modified relation are available

e.g. Change-reference Maintainable problem

 19

Chapter 4. Selection of views to materialize in a Data
Warehouse

A data warehouse is a repository of integrated information available for querying and
analysis. One of the most popular application of a data warehouse is On-line
Analytical Processing (OLAP). Multidimensional data analysis, as supported by
OLAP systems, requires the computation of many aggregate functions over large
amounts of data. To meet the performance demands imposed by these applications,
virtually all OLAP products resort to some degree of pre-computation of these
aggregates and materialize the results as views. The more that is pre-computed, the
faster queries can be answered; however, it is often diff icult to determine which are
the best aggregates to be pre-computed given a fixed amount of space. Storing the set
of pre-computed aggregates are said to be materialized. Thus, the problem here is to
fill available space with pre-computed aggregates in order to minimize the average
query response time of the system.

4.1 Background
The set of multidimensional views that summarize measure information in a data
warehouse with respect to any subset of possible dimension is called data cube. In a
data cube, some aggregate views can be computed from another aggregate view. For
example, the aggregate on {ProductId, StoreId} can be used to answer a query on
either { ProductId} or { StoreId}. This relation between aggregate views can be used to
place them within a lattice framework as shown in figure 1. Materialized aggregate
views are vertices of the cube, the following two properties define a lattice L of
aggregates.

(a). There exists a partial order ������������������ ! �"#�� !���$�&%(')���+*,'-����./�10)�����2')3���4�576�"
aggregate views u and v, v �98:');<���/=�6��(0?>@'2;�%�3����A�&�1����*B����"#��=@8�*#'-�/ C��./�
results of u by itself.

(b). There is a base view in the lattice, upon which every view is dependent. The
base view is the database.

(c). There is a completely aggregated view “ALL” which can be computed from
any other view in the lattice.

In figure 4.1, three dimensions ProductId,
StoreId and TimeId are represented by P,S and
T respectively, and an aggregate view is labeled using he names of the attributes it is
aggregated on. For example,view PT is aggregated on attributes ProductId and TimeId.
If an edge connects two views, then the higher view can be used to precompute the
other view in the lattice. For example, there is an edge between ST and T. This means
that ST can be used to compute T. If ST is not materialized, a query on P has to be
answered using the base table, PST.

PST (100)

PS (60)
PT (100)

ST (50)

P (10)
S (5)

T (8)

ALL (1)

Figure 4.1: The data cube
lattice cor responding to the
schema {ProductId, StoreId,
TimeId}. The numbers are
sizes of the view in number of
tuples.

 20

4.2 Problem
It is desirable to precompute and materialize all the views in a data warehouse in order
to speed up the average query response time. However, there are two constraints that
make it impossible to store all the materialized views in a data lattice.

(a). The first constraint is space constraint. Typical data warehouse is huge and
consists of several tera bytes of data. It is expensive and impossible to store
all the materiali zed views.

(b). The second constraint is the update time constraint. Even storage cost is
cheap enough to hold all of the materialized view in a data warehouse, there
would not be enough time to update them all . As all materialized view
depends on the base table, they need to update when the data in base table
changed. However, typical business that runs data warehouse only has time
to do update at night when the business is closed. As a result, the limited
amount of time for update is criti cal for a large amount of materiali zed views.

Therefore, selecting which views to materialize in a limited amount of space and
under the update time constraint, in order to maximize the average query response
time of the system is difficult.

4.3 Cost Model
The cost of answering a query (time of execution) is assumed to be equal to the
number of tuples in the aggregate used to answer the query. Hence, the querying
benefit of an aggregate view v is computed by adding up the savings in query cost for
each view w (including v) over answering it from the base view. That is, instead of
accessing the base table, we save some cost by accessing the smaller size materialized
view v for every query w that can be answered by v. For example, v is { P,S}, then w
is the set {{ P,S},{ P},{ S},{ ALL} } of views. The benefit of querying v instead of w in
figure 1 is (100-60)*4 = 160. As our goal is to maximize the speed up in query
response time under space and update time constraint, we consider the benefit per unit
space of a view instead of only the benefit of a view.

4.4 Existing View Selection Solutions
Many studies on view selection focused on space constraint. Greedy algorithm is
widely applied to solve this problem, like BPUS and PBS are shown in figure 2.

Algor ithm BPUS
WHILE (SPACE > 0) DO

w = aggregate with max. benefit per unit
space in A

IF (space - |w| > 0) THEN
space = space -|w|

 S = S ∪w
 A = A – w
ELSE

 space = 0
(a)

Algor ithm PBS
WHILE (SPACE > 0) DO

w = smallest(A)
IF (space - |w| > 0) THEN

space = space -|w|
S = S ∪w
A = A - w

 ELSE
space = 0

(b)
Figure 4.2 Greedy algor ithms under size constraint.

 21

In BPUS, it constructs a set of view (S) to materialize under the space constraint
(SPACE), where A is the whole set of views in a data lattice. Starting from an empty
set (initially S is empty), the aggregate view w with the maximum benefit per unit
space is selected. The algorithm runs to pick the view with maximum benefit per unit
space in each round, until the space constraint are met. The benefit of this algorithm is
at least 63% of the optimal, which is close to the optimal. The running time is O(kn2),
where k is the number of selected views and n is the total number of views in a lattice.

Because a lattice of d dimensions has 2^d views and 2̂ (2^d) view sets. n grows
exponentially with dimensionali ty, the algorithm is unacceptably slow for large
numbers of dimensions and typical data warehouse has dimension greater than ten.

A large portion of running time spend in this algorithm is the time spent to update the
benefit per unit space of every view in each selection round. The update process itself
takes O(n^2) to update the benefit of other views in picking each view to materialize.

Another proposed greedy algorithm applied in solving this problem is PBS. The PBS
algorithm, unlike BPUS that considers benefit per unit space. Instead, it only
considers the size of the views that are going to pick. PBS picks views in increasing
size until the space limit i s reached as shown in figure 2(b). PBS picks the same set of
views as BPUS provided the lattice is size restricted. In a size restricted lattice, each
view is at least k+1 times larger than its largest child, where k is the number of its
child). This rule makes sure the parent of a view is much larger than the child.
Otherwise, pick by size may not give optimal solution as picking a parent will benefit
more than child if they have similar size. The time complexity of this algorithm is
O(nlogn) where n is the number of views exist in the lattice. The running time is
much faster than BPUS as no update is needed in every iteration. Only time spent on
sorting the views in the lattice by size is needed, which is much cheaper than BPUS.

4.5 View Selection Conclusion
In this part of the paper, we have studied two greedy algorithms, BPUS and PBS, in
solving the view selection problem under the size constraint. Other algorithm exists
for solving the same problem under update time constraint. In general BPUS works
well with all kind of data lattice, no special condition needs to hold for the lattice in
this algorithm. However, the running time O(kn^2) is slow due to exhaustive update
of benefit during the picking process. Another algorithm, PBS runs O(nlogn), much
faster than BPUS. However, this algorithm requires the data lattice to be size
restricted, which may not be the general case in practice.

 22

Chapter 5. View management system for Data
Warehouses

5.1 Introduction
The standard query operation in Data Warehouses is very expensive. For example, a
manager may has interesting to know what is the total sales amount of every
salesperson, in all different branches of his company, in the last four year. To
answer such query with the standard query language, it may take hours to do scanning
tables and aggregating. In order to speed up the query processing time, we have to
pre-compute and materialize of views with aggregate functions. The problem now is
that how we can manage those views in order to provide best performance benefits.

There are mainly two kinds of the view selection methods: Static selection of view
and dynamic selection of view. We will discuss these two directions of view
selection in separate section. For the dynamic selection section, we will mainly
discuss a dynamic view management system for Data Warehouses called DynaMat.

5.2 Static Selection of View
The meaning of static is that the system itself cannot find out which set of views have
to be materialized. In such case, the date Warehouse administrator has to control the
amount of redundancy added and specify the space that will be allocated for the
materialized view. Also, giving some description on the query pattern is necessary.
Base on the given information, some algorithms can be used to generate a suggestion
set of views that can be materialized and hence, provide better performance of OLAP.

This static selection of views however, has several disadvantages. Firstly, it
contradicts to the dynamic properties of decision support analysis system. In a
decision support system, the query pattern is diff icult to predict because different
users may be interested in the different trends in different period. Moreover, as data
in data Warehouse is changed periodically, say, the headquarter of a company may
collect the sales date from all branch at night, a static selection of view might be
quickly become outdated. This means that the administrator should continually
monitor the query pattern and periodically re-run the algorithms to update the
materialized views. If the data Warehouses system is large and complicated, this
work is very time consuming.

Another drawback of the static view selection is that the system cannot use the results
of queries that cannot be answered by the materialized view. Since there are a lot of
inter-dependency among a set of OLAP queries, some queries are likely to be
computable with the results of previous queries operations. For example, someone
want to find “ total sales of every season in last year” , another one want to find “ total
sales in last year” . The result of second query can be calculated from the result of
the first query. This means that we do not have to access the base table at all, but the
static selection of view does not have such function. Furthermore, static selection of
view only considers how to select a view to materialize, it does not consider how to
refresh those views. This is also very important because the base data in data
Warehouse is always changing.

 23

D�E�F EGHE�I JLKNM?OQPLJR#PLJLI

Query Interface

Fragment Locator

View Pool

Directory
Index

Admiss ion
Control Enti ty

5.3 Dynamic View Management System : DynaMat

Features of DynaMat
DynaMat can dynamicall y materialize the data at multiple levels of granularity in
order to match the demand. It also takes the two maintenance constrains, which are
time to update the view and space to store the view, into consideration. DynaMat
unifies the view selection and view maintenance problems under a single framework
using “goodness” measure to compute the view maintenance plan.

System overview
There are mainly four parts in DynaMat.
View Pool is the information repository to
store the materialized results.
Fragment Locator is to determine whether
or not the already materialized results can
be used to eff iciently answer the query.
Directory Index is maintained to supports
sub-linear search in view pool for finding
suitable candidate materialized results. If
the search cannot find a candidate to
answer the query, the conventional query
operation will be used.
Admission Control Entity is used to test
the result of query whether or not it is
beneficial to be stored in the pool.

The system operations can be categorized in two operational phases: online phase and
update phase. During online phase, the goal of the system is to answer as many
queries as possible from the View Pool, because this will be much faster than through
the conventional method. At the same time, the new query patterns will be
monitored and be adapted by the system.

During the update phase, the new data from distributed date sources will be received
and stored in the data warehouse. Since the base date is changed, the materialized
results in the pool will also be refreshed.

The system will act as in two bound cases, one
is time bound case and the other is space
bound case. During the online phase of date
warehouse, the query results are continually
added to the pool. So the size of the pool
will grow monotonically overtime if the size
does not reach the space limit . During the
update phase, owning to the time constrain W,
some materialized results may not be
update-able and will be evicted from the pool.

This is the time bound case. In the graph, the local minimums represent the amount
of materialized date that can be update within W and the local maximums refer the
pool size just before the update event happened.

Figure 5.1

Figure 5.2

 24

The space bound case happened when the pool become full . In such case, some
replacement policy such as LRU, FIFO will be used. If the update window W is
large enough that all the materialized results
can be update-able, then the content of the
pool is determined by the replacement policy.

View Pool organization
The results in the view pool can be stored as
the traditional relational tables. However,
that implementation cannot guarantee
reasonable query performance. Moreover,
scanning a large table can be time consuming.
A better data structure to store the materialized result is Cubetrees. Cubetrees are
multidimensional data structures that proved both storage and indexing in a single
organization. With such structure, better query performance and space utili zation
can be achieved.

A multidimensional data ware house is a data repository in which data is organized
along a set of dimensions S�T(U V�W�X V�Y�X2Z[V�\�]S�T(U V�W�X V�Y�X2Z[V�\�]S�T(U V�W�X V�Y�X2Z[V�\�]S�T(U V�W�X V�Y�X2Z[V�\�] . Assume the data warehouse workload is a
collection of Multidimensional Range queries (MR-queries) and each of them can be
visualized as hyper-plane in the data cube space using a n-dimensional vector ^^ ^^ :

^�T(_ `aW�X `aY�X2Z[X `a\�]^�T(_ `aW�X `aY�X2Z[X `a\�]^�T(_ `aW�X `aY�X2Z[X `a\�]^�T(_ `aW�X `aY�X2Z[X `a\�]

Where ̀abàbàbàb is a range in the dimension’s V�bV�bV�bV�b domain and ̀ab`ab`ab`ab can one of the following:
1. a full range : `ab`ab`ab`ab ={min(V�bV�bV�bV�b),max(V�bV�bV�bV�b)}. This means range between the minimum

and the maximum values of key V�b$cV�b$cV�b$cV�b$c
2. a single value for for V�bV�bV�bV�b
3. an empty range which represent a dimension that is not present in the query

For instance, Let S�T(_ d(e2fS�T(_ d(e2fS�T(_ d(e2fS�T(_ d(e2fgVV VV�hHigjkX�lmjkfme2n-]hHigjkX�lmjkfme2n-]hHigjkX�lmjkfme2n-]hHigjkX�lmjkfme2n-] where 1=<d(e2fmV�h�igj <=1000 and 1=<lmjkfme2n <=200. The
hyper-plane ̂�T(_ o�p�X2U W�X Y�p�p�q]�̂T(_ o�p�X2U W�X Y�p�p�q]�̂T(_ o�p�X2U W�X Y�p�p�q]�̂T(_ o�p�X2U W�X Y�p�p�q] corresponds to the SQL query is :

 Select product, store, aggregate_list
 From F
 Where product=50
 Group by product, store

The same notation wil l also be used to represent the materialized results of MR
queries which is called Multidimensional Range Fragments (MRFs). DynaMat maps
each SQL query to one or more MR queries. Given a MR query, we want to find the
best set of MRFs in the view pool to answer the query. In the system, MRFs provide
a slightly coarser grain of materialization because we hope that single stored fragment
can be used to answer a new query, and we do not want to try the combination of a lot
of small fragments to find the result. Having small fragment will be result in poor
performance during query execution and updates. Hence, larger fragments of views
are preferable.

Figure 5.3

 25

Definition of rr rr covers ̂̂̂̂ : Given a MRF rr rr and a query ^^ ^^ , rr rr answers ̂̂̂̂ iff
• for every non-empty ranges ̀ab`ab`ab`ab of ^^ ^^ , the fragment stores exactly the same range
• for every empty range ̀̀̀̀sbbbb , the fragment’s corresponding range is either empty

or spans the whole domain of dimension

When a query is submitted, instead of search
all the fragments, DynaMat uses Directory
Index to further prune the search space. The
result is a set of indices connected through the
lattice. Each node has a dedicated index that
is used to keep track of all fragments of the
corresponding view that are stored in the pool.
In order to find the result of a query q, we
scan all views in the lattice by using ^^ ^^ . If it
contains materialized results f whose hyper-planes cover ^^ ^^ , then result can be found.
For example:

• SS SS ={product, store, customer}
• ^^ ^^ ={ (1,1000),(),Smith}

We first scan the index for view(product,customer)
using the rectangle{ (1,1000),(Smith,Smith)}.
The graph right side gives a snapshot of the
corresponding R-tree implementation for
view(producti,customer). The shaded areas are
the MRFs of the materialized views in the pool.
Since no fragment is found, based on the
dependencies defined in the lattice, we also check view(product,store,customer) for
candidate fragments. So we then
using((1,1000),(min(store),max(store)),(Smith,Smith)}, if a fragment is found, we
collapse the store column and aggregate the measure to compute the final result.

Pool Maintenance
A goodness measure was derived for choosing which of the fragments will be stored
and which will be discarded. Each time the DynaMat reaches the space or time
bounds, it uses the goodness measure for replacing MRFs. The following shows the
four criteria to define such a goodness:

• the time that the fragment was last accessed by system
 goodness(f) = Tlast_access(f)
 This will results in a Least Recently Used(LRU) type of replacement policy

• the frequency of access for the fragment
 goodness(f) = freq(f)
 This will results in a Least Frequently Used(LFU) type of replacement policy

• the size of the fragment
 goodness(f) = size(f)
 This will results in a Smaller-Fragment-First(SFF) type of replacement policy

Figure 5.4

Figure 5.5

 26

• the expected penalty rate of re-computing the fragment if it is evicted
 goodness(f) = freq(f) * c(f) / size(f)
 where c(f) is the cost of re-computing f
 This will results in a Smaller Penalty First(SPF) type of replacement policy

5.4 View Management Conclusion
In this part of context, we have discussed the two view selection strategies: static and
dynamic view selection. For the static strategy, we have shown the drawback.
For the dynamic view selection, we discussed it with a dynamic view management
system called Dynamic. In the following part, we will see more view selection
algorithms.

 27

References

Surajit Chaudhuri and Umesh Dayal. An Overview of Data Warehousing and OLAP
Technology. ACM SIGMOD Record 26(1), March 1997

J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: a relational
aggregation operator generalizing group-by, cross-tabs and subtotals. Int'l Conf. on
Data Engineering '96. Technical report

A. Gupta, and I. S. Mumick. Maintenance of Materialized Views: Problems,
Techniques, and Applications. Data Engineering Bulletin, June 1995.

H. Gupta. Selection of Views to Materialize in a Data Warehouse. Proc. of the Sixth
ICDT, 98-112, 1997

A. Shukla, P. Deshpande, J. Naughton, Materialized View Selection for
Multidimensional Datasets.

Mamoulis, N., Kalnis, P., Papadias, D. View Selection Using Randomized Search.

E. Baralis, S. Paraboschi, E. Teniente, Materialized view selection in a
multidimensional database, Proc. VLDB '97, 156-165

Yannis Kotidis and Nick Roussopoulos, DynaMat: A Dynamic View Management
System for Data Warehouses. Proc. ACM/SIGMOD '99

