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Abstract

The objective of this work is to develop a design methodology for data ware-
houses. It is based on the three level modeling approach with emphasis on
conceptual modeling. Logical design to the relational model and physical
tuning in this environment will also be treated.

1 Research Question

In recent years, data warehouses (DWs) [Inm92] as backbone of decision support
systems caused a lively interest in research and practice. Typically, the DW is a
database held separately from operational systems. Its data are integrated from the
operational systems of an organization and often supplemented by data from ex-
ternal sources. The increasing popularity of DWs reflects the rising requirement to
make strategic use of data integrated from heterogeneous sources. Some examples
from economy for using the data stored in a DW are database marketing, control-
ling and (long–term) binding of customers.
But there are also application scenarios outside the economical context, e. g. in
medical registries. To be able to make reliable predictions about e. g. local accu-
mulation of a disease DWs can be used.
All these application scenarios are very important for the organizations and they
all have in common that the underlying DW has to be reliable, maintainable and
expandable. For ensuring these quality aspects a systematic engineering of DWs is
necessary.
Data in a DW are modelled multidimensionally because this kind of modeling re-
flects the end user’s understanding of the problem domain. The most important
characteristic of the multidimensional model is dividing data into facts (also called
measures or quantifying data) and dimensions (also called qualifying data).
To build reliable, durable DWs meeting the users’ requirements a design method-
ology both falling back on the experiences from designing classical OLTP (online
transaction processing) databases and considering the special aspects of DWs is
necessary.
The aim of this work is to build such a design methodology. Lessons learned while



designing conventional OLTP databases should be considered, e. g. starting with
conceptual modeling, followed by a transformation to the logical level and a physi-
cal design step. On the other hand, different requirements to both types of databases
have also to be taken into account, particularly with regard to the following issues:

� In OLTP databases all data being relevant for the operational business have
to be modeled whereas conceptual modeling for DWs should comprehend all
information needed for decision support.

� When modeling a DW the multidimensional model should be considered.
� While the physical design of an OLTP database has to be optimized for high

throughput of transactions, a DW should provide a good basis for OLAP
(Online Analytical Processing)–tools querying complex amounts of data with
minimal response time.

� Meta data play an important role in the context of DWs, e. g. describing the
source of data.

2 Related Work

We can classify the related work by the four areas conceptual multidimensional
modeling, transformation to the logical level, physical database design and meta
data.

Conceptual Multidimensional Modeling

In the area of DWs some approaches for conceptual multidimensional modeling
have been developed, namely MERM (Multidimensional E/R Model) [SBHD98],
ADAPT (Application Design for Analytical Processing Technologies) [Bul96] and
DFM (Dimensional Fact Model) [GMR98]. But they have some deficits: ADAPT
and DFM have no formal foundation and both of them have no adequate expres-
siveness, especially for modeling sophisticated dimensional structures. Moreover,
ADAPT does not distinguish between design levels and does not support a contin-
uous development process, while DFM is not supported by tools. MERM has a
well foundation with an extension of the relational calculus, distinguishes strictly
between design levels and is embedded in a tool supported environment. But some
aspects of multidimensional modeling, e. g. optional dimensional attributes or lim-
iting aggregation to special operations can not be modeled. Furthermore, using an
extension of the E/R model is oriented towards a relational implementation. Last
of all, all approaches are not compatible among each other and none of them has
object–oriented aspects.
On the other hand some commercial tools [Mic00b], [Inc00] for designing DWs
are available but they are most often proprietary. Hence conceptual modeling is of-
ten left out in practice or the conceptual and logical levels coincide, e. g. applying
Kimball’s dimensional modeling [Kim96].

Transformation

There are some approaches [RBP
�

93], [BPS97], [Cor98] to transform an object–
oriented model into a relational schema. Usually they define transformation rules



for each kind of connection. This results in a clear transformation but is inadequate
in our context because we would loose expressivness e. g. distinction between
different types of classes (facts and dimensions) made on the conceptual level.

Physical Database Design

The three major tasks of physical database design are indexing, materialized views
and partitioning. About all three aspects much work has been done in the past, also
with respect to the special needs of data warehouses.
In the field of indexing the B–tree [BM72] or B*–tree [Wed74] are the classical
one. It is also used in the context of DWs. But moreover, in DWs there is need for
indexes as basis for efficient intersection– and union–operations. So the develop-
ment of new kinds of indexes like bitmap indexes [OQ97b] has benn forced by data
warehouses. Another appraoch are the UB–trees [Bay96], [MBB99a], [MBB99b],
an index structure for the efficient processing of multidimensional range queries.
For special solutions of indexing in the context of DWs the work of the Stan-
ford database group is to be named [GHRU97] and is also be treated in [OQ97a],
[Gra99].
Also in the field of materialized views this group has done a lot of work [Gup97],
[GS97], [GM97], especially on the topics incremental maintenance and consistency
on multi–source updates.
Original, partitioning has been developed for distributed [OV91], [BG92] and par-
allel databases [DG92], [AW98]. Of late, partitioning is also applied in centralized
databases to handle very large database tables [KN99] and is already realized in
commercial systems [DG98]. A related approach can be found in [MWM99].
But all the work listed former only considers one aspect of physical database de-
sign. A more holistic approach for the task of physical database design can be
found in [RS91]. The authors propose a two-phase algorithm for physical database
design. In phase one the algorithm, for each logical query, uses rules to determine
characteristics of a physical design (such as indexes) that would be beneficial to the
query, and selects a physical design that yields a low cost estimate for that query.
In phase two a notion of compromise is used between physical database designs.
Starting from the physical designs selected in phase one, the algorithm looks for a
compromise physical design that minimizes the cost of a set of queries.

Meta Data

In the area of meta data a few standards have been proposed, namely:
� MDIS (Metadata Interchange Specification) by MDC (Meta Data Coalition)

[Coa00]
� IRDS (Information Resource Dictionary System) [Gro00a]
� CWMI (Common Warehouse Metadata Interchange (OMG)) [Gro00b]
� OIM (Microsoft Open Information Model) [Mic00a]
� MDAPI (Multi-Dimensional API (Olap Council)) [Cou00]

In the meantime, MDIS is obsolete because Microsoft is also member of the MDC
and so OIM is the common standard.
Furthermore, SMART (Supporting Metadata for Data Warehousing Systems) [Pro00]
as a research project with practical regards is to be named.



3 Research Methodology

Within the scope of our research project ODAWA (OFFIS Tools for Data Ware-
housing) [Her99] our procedure to tackle the research problems described above
consists of the following subtasks:

� Definition of a framework for designing data warehouses: We want to sketch
the main actions of designing data warehouses.

� Definition of a language for conceptual multidimensional modeling: We
want to design a language for multidimensional conceptual modeling. This
language should allow the user to model in terms of the multidimensional
model and provide constructs to build sophisticated multidimensional sche-
mas.

� Construct a transformation algorithm: The algorithm should transform our
multidimensional schema into a relational schema. During this process mul-
tidimensional properties should be preserved.

� Physical database design: A method for adequate physical database design
should be applied. This method should consider different aspects of physi-
cal design (indexing, partitioning, materialized views) and should be config-
urable for different target database management systems.

� Meta data: During the process described in the subtasks above a lot of meta
data is produced. They should be integrated into a meta data repository.

� Prototypical implementation of selected software modules: The design method-
ology should be tool–supported continously. One aim is to extend existing
products. Those components where this is not possible are implemented pro-
totypically in order to be able to demonstrate their basic functionality.

� Evaluation by means of a real–world application: To prove the soundness
of the design methodology and its implementation, we want to apply it to a
real–world application.

4 Basic Ideas and Preliminary Results

The framework for the design methodology is based on the three–level–modeling
proved in designing conventional OLTP databases. Furthermore, on the conceptual
level we are distinguishing between the language and the graphical representation.
The framework is sketched in figure 1.

We also have developed a multidimensional meta language called MML (Mul-
tidimensional Modeling Language) [HH99a], [HH99b], having the following char-
acteristics:

� MML is an object–oriented language and therefore provides a good basis for
flexible, implementation–independent modeling.

� MML meets the needs of conceptual multidimensional models like e. g. dis-
tinguishing between dimensional– and fact–classes or providing the possibil-
ity to model sophisticated dimensional structures.

� MML enables schema evolution by assigning sets of time intervals to con-
nection elements.
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The MML is specified semiformally by an UML–diagram, class descriptions
and elucidating prose. The inherintence hierarchy is depicted in figure 2: The
Help-Meta-Classes provide the basic object–oriented property of inheritence and
by the metaclass Time-Variable-Element it is possible to assign valid time inter-
vals to MML schema elements. Data-Elements provide basic and complex data
types. The classes in the area Context-Elements introduce multidimensionality by
distinguishing classes into Fact-Classes and Dimensional-Classes. The connec-
tions of a MML–diagram are falling into Common Connections as known from the
object–oriented–world and Properties considering special types of connections of
the multidimensional model.

With the MML as basis different front end tools can be used (distinction be-
tween language and graphical representation). Exemplarily, we have developed an
extension of the UML (Unified Modeling Language), called � UML (multidimen-
sional UML). By using the concept of stereotypes for extending the UML [RU97]
we have defined new stereotypes to model the different types of classes and to mark
the connections for building hierarchies. Moreover, the UML extension mechanism
of tagged values is used for modeling derived attributes. Figure 3 shows some of
the new modeling constructs.

<<Roll-Up>>
Next level

<<Dimensional-Class>>
Product

Name: String
Colour: String
Source of supply: String

<<Fact-Class>>
Saled Product

Number of items: Numerical
Unit price: PriceType
/ Sum: PriceType
        {formula=�Number of items*Unit price�,
         parameter=�Number of items, Unit price�}

Figure 3: New modeling constructs in the � UML

Figure 4 shows an example of an � UML schema: in the middle of the picture
there is the value of a sale as fact, aggregated by some single items. The dimensions
’product’, ’time’ and ’location’ are placed all round the facts. In the dimensions
’product’ and ’time’ multiple hierarchies are defined. Furthermore, the edge from
’week’ to ’year’ has the stereotype shared–roll–up because not every week can
be mapped to one year unambiguously. In the dimension ’location’ inheritence is
used to model the ’point of sale’ as general concept and ’branches’ and ’department
stores’ as specializations.

An architecture of the implementation is sketched in figure 5. The � UML is
realized as an extension of the commercial CASE tool Rational Rose (see figure 6).
The MML is implemented as a class library in C++. For storing MML–diagrams
persistently an ORACLE database is used at the moment, but we want to change to
an extended version of the OIM as soon as possible.

Assuming a relational database, for satisfying the mapping from the conceptual
to the logical level we have defined and implemented a mapping [Har99] trans-
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Figure 4: Example of � UML

forming MML–diagrams into a special kind of relational schema, called REMUS
(Relational Model for Multidimensional Purpose). Beside relations and attributes,
a REMUS schema consists of multifarious meta data. These meta data carry the
information of the multidimensional aspects of the MML–diagram which can not
be mapped to tables and attributes directly.

The work on the physical design step is just in the beginning. As basic idea a
three–step approach should be realized, consisting of the following steps:

� An algorithm transforming a REMUS schema into a basic working database
schema. This schema should be independent of the DBMS and OLAP–tools
to be used.

� An algorithm transforming the basic working database schema to a schema
already considering some special needs of the DBMS and OLAP–tools (e. g.
denormalization of hierarchies). But all issues of tuning are left out at this
step.

� In the last step of physical database design the schema is extended by apply-
ing tuning actions. Again this is a two–stage step. First, under consideration
of parameters about the extension (e. g. number of rows in a table), the phys-
ical model (e. g. organization of hard disks) and the user behaviour (e. g.
query patterns) a set of actions being beneficial to the schema is selected.
In the second step a global optimization is done by selecting some of these
tuning actions.
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Figure 5: Implementation

Later on in the lifecycle of the DW, the last step of physical design can be repeated
when the parameters have changed.

The metadata model is based on the OIM, extended by specific aspects for e. g.
storing MML–schemas. Later on, we will extend the model to be able to store de-
tails about the physical design process.

5 Rating

In the scope of this work we are developing a design methodology for DWs. The
main focus is on conceptual modeling whereby our language MML provides both
many constructs to model sophisticated multidimensional structures and object–
oriented constructs to describe the world of discourse in a natural way. By distin-
guishing between language and (graphical) representation on the conceptual layer
we are providing freedom to the user in choosing his modeling tool.
The transformation algorithm considers the multidimensional model and leads to
a relational schema specialized for DWs. Moreover, it delivers a set of meta data
which can be used later on in the design cycle.
The ideas about physical design can not rated at the moment because the work is
just in progress.
By using existing tools (Rational Rose) and standards (OIM) we save development
effort, get runable prototypes rapidly and can prove our concepts short–term.
As a conclusion, we believe that our design methodology represents a novelty in
current research on DW design and we are expecting that the planned evaluation
will show the applicability of the work.



Figure 6: Rational Rose extended for � UML modeling
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