
An Object Oriented Approach to
Multidimensional Database Conceptual Modeling (OOMD)

Trujillo, J.*, Palomar, M.**
Grupo de Programación Lógica y Sistemas de Información

*Dpto. Economía Financiera
**Dpto. Lenguajes y Sistemas Informáticos

Universidad de Alicante. E-03071. Alicante. Spain.
Email: * {juan.trujillo@ua.es}, ** {mpalomar@dlsi.ua.es}

Abstract. In the recent past, there has been an increasing
interest in multidimensional databases (MDB) and On-line
Analytical Processing (OLAP) scenarios. Several
multidimensional models have been proposed in the last
days. However, very few works have been focused on the
area of multidimensional database conceptual modeling.
Moreover, they are either conceptual extensions to the
classical multidimensional model or translations from
classical database conceptual models (such as the Entity-
Relationship model). Nevertheless, we take the concepts
and basic ideas of the classical multidimensional model
(dimensions and facts) to propose a revolutionary approach
based on the Object Oriented (OO) Paradigm to MDB
conceptual modeling. Then, the basic elements of our
Object Oriented Multidimensional Model (OOMD) such as
dimension classes and fact classes are introduced. We then
present cube classes as the basic structure to allow a
subsequent analysis of the data stored in the system. We
fairly believe that the utilization of the OO Paradigm will
provide us a general conceptual model to MDB conceptual
modeling in a more flexible, natural and simple way than
the models proposed until now.

1 Introduction

Companies can adopt strategic decisions that may suppose
a competitive advantage with respect to their competitors.
In this context, the concept of Data Warehouses (DW)
emerges in the decade of the ninety ([11], [12]) as an
integrated data collection of the company oriented to
decision making. The success of these DW is not only
demonstrated by the amount of commercial products that
have been emerging lately ([2], [18], [19]), but also in the
proli feration of research projects and topics ([14], [21], [10]
and [20]). A more detailed on-line bibliography focused on
DW and OLAP technology can be found in [17].

However, the analysis of this historical data (DW) is carried
out through user final tools that are based on OLAP
technologies [6]. The storage structures (derived from the
DW) used by these techniques are known with the name of
hipercubes or multidimensional fact tables. These structures
are suitable for this purpose since they represent in an
intuitive way the factual data according to the characteristics

(dimensions) that are considered relevant to the analysis. We
will i ntroduce a simple example to handle these concepts in
the following section.

Traditional database systems are inappropriate for
multidimensional analysis since they are optimized for On-
line Transactional Processing (OLTP) in which an enormous
number of concurrent transactions containing normally few
records are involved. Nevertheless, OLAP techniques execute
few complex queries involving a huge number of records.
Current technology provides both OLAP servers and user
final tools for the development of MDB. With reference to the
OLAP servers we can find either relational systems (ROLAP)
or multidimensional systems (MOLAP). A ROLAP system is
an extended relational system that maps operations on the
multidimensional data to standard relational operations
(SQL). On the other hand, the MOLAP systems store and
manipulate data directly in special structures called
multidimensional arrays.

Modeling Multidimensional Databases (related work)
In both systems, MDB are modeled depending strictly on the
corresponding implementation (ROLAP or MOLAP
systems). Some problems emerge from this form of
proceeding. Firstly, it does not exist a general conceptual
model (independent of subsequent implementation details) to
MDB conceptual modeling and valid for a subsequent
implementation in any system. Secondly, the requirements
posed for a subsequent data analysis need take into
consideration tedious details of the data physical organization
more than of its logical aspects (as also argued in [4]). We
consider that these and other subsequent problems will be
solved with the proposal of a general conceptual model
independent of any subsequent implementation details.
Furthermore, we fairly believe that the application of the OO
Paradigm will provide us a general conceptual model with the
total independence from physical aspects (as previously
commented) to MDB conceptual modeling in a more natural
and simple manner than the models proposed until now.

The traditional model used for MDB modeling is the known
“star model” ([2], [11] and [12]) and its variants
(“snowflake”, “fact constellation” and so on), mainly if a
subsequent implementation is carried out in a ROLAP
system. This model consists of two kinds of relational tables,
dimensional tables and fact tables. The previous ones contain
characteristics of the factual data and the latter ones contain
the factual data itself (whose values are represented in some
attributes called measures or fact attributes). Data contained

in dimensional tables present different levels of granularity in
most cases, which is not taken into account in the model due
to the fact that it only considers relational tables. We believe
that this model is not suitable for MDB conceptual modeling
in the sense that it refers to relational tables while the MDB
modeling is being accomplished. However, our OOMD
approach defines abstract objects without any reference to
tables or their subsequent implementation. Furthermore, we
define the cube as other collection of abstract objects on
which a group of operations (defined/permitted on it) are
carried out to allow a subsequent analysis of the data
contained in it. Moreover, a special relation is applied to these
objects to express the granularity of data in the conceptual
model.

To our best knowledge, only three works focused on the
conceptual design of MDB have been presented until now. In
[7], the conceptual design is outlined from the schemes
provided by the ER model of the company OLTP systems.
Nevertheless, the nature of DW makes necessary, in most
cases, to include data that is not in the original OLTP systems
and therefore, it does not exist in the ER schemes. Moreover,
in this approach, facts and dimensions are defined from the
entities and relations of these schemes; i.e. only data is taken
into account. However, our approach provides a higher level
of abstraction since not only are the data static properties
(data itself) considered, but also the dynamic ones (operations
to be applied on data). Furthermore, we can find several
references such as [13] that consider the ER model
inappropriate for DW conceptual modeling.

Another proposal ([4]) extends a multidimensional model
(MD) proposed in [3] in which a declaratory query language
and the research of its expressiveness were mainly introduced.
This extension of the MD defines a schema of MDB as a
schema of fact tables to provide a general design
methodology for MDB. This MD considers all the necessary
concepts for the conceptual design of MDB. However, we
consider that not only does it use the concept of tables in the
conceptual design phase, but it is also closed to the classical
relational model (with the normal extensions to allow the
definition and subsequent multidimensional data analysis).
We fairly believe in a more revolutionary proposal and a
higher level of abstraction in the design phase. According to
this, our OODM considers abstract objects and we do not take
any assumption neither about the logical model to be used nor
fact tables. Moreover, this higher level of abstraction will
allow us to define a cube class in which both static and
dynamic properties will be taken into account. As a
consequence, we will achieve a more restrictive way on a
subsequent data analysis phase.

In [15] we find the first OO approximation for the design of
MDB in the proposed Nested Multidimensional Data Model,
which is a conceptual extension to the classical
multidimensional model to allow us to model complex OLAP
scenarios. It introduces the concept of multidimensional
object to define the multidimensional cube in which a group
of operations are defined on it to permit a subsequent data
analysis. This cube consists of dimensional and classification
attributes (for a previous classification of the dimensional
attributes) to express data features. Our approach only
considers dimension attributes on which an attribute roll-up
relation (ARR) is defined. We consider that this relation can

provide us a higher flexibil ity in the design phase in the sense
that new ARR’s may be defined at any time without being
necessary to change the existing ARR’s. Nevertheless, the
main contribution of [15] is to demonstrate that cube
structures are nested and therefore, their analysis can be
simpli fied. However, our OOMD introduces for first time in
this field the concept of classes to encapsulate data and
operations to apply on it, which provide us a higher level of
abstraction.

Multidimensional cubes can be seen as different classic
views of databases that users can have. According to [15],
we consider that the definition of an abstract entity (abstract
objects) to encapsulate data that the cube contains as well
as the operations permitted on it in the design phase will
achieve a clearer design of MDB, higher design flexibili ty
and a better restriction during the data analysis phase.

On the other hand, several multidimensional models (formal
logical models) have been proposed. However, they are
mainly guided to the study of OLAP query languages. A
common feature to all of them is that they are guided to a
specific implementation and therefore, they are less suitable
to the conceptual design of MDB. In the rest of this section,
we will make reference to three multidimensional models that
we consider the most relevant ones presented until now.

In [1], a model based on the notion of the multidimensional
cube (whose first definition was introduced in [8]) and an
algebraic query language to allow analysis operations on this
cube are proposed. However, there are aspects that we
consider relevant in the design of MDB as the dimension
attribute classification hierarchy that are considered using a
special operator in the query language. However, in our
proposal, this relevant element is considered from the first
step in the conceptual design providing the ARR on the
dimension attributes. Furthermore, the model proposed in [1]
is based on the idea of a subsequent mapping to the traditional
model adopting the presumption of a subsequent
implementation in a relational system.

In [9], a logical model for MDB in which the contents are
clearly separate of the structural aspects is proposed. As
above-commented, we find basic elements in the design of
MDB as the aggregation levels of dimensions that are not
explicitly considered. Furthermore, this model is focused on
the development of a query language based on the structures
previously defined. Finally, we should say that the best
success of this model is its complex mapping to the relational
model. On the other hand, in [16] a multidimensional model
(MDD) for OLAP techniques is proposed. In this model, a
query language called "grouping algebra" based on a basic
component called multidimensional cube is developed.

In conclusion, no general conceptual model with a high level
of abstraction and independent of any subsequent
implementation, and consequently, suitable for the conceptual
design of MDB has been proposed until now. However, the
current proposals are conceptual extensions to the classical
multidimensional model, translations from classical database
conceptual models such as the E-R model or mappings to the
relational model.

Paper layout. In next section, we introduce a simple example,
which will be used throughout the paper, to handle all the
concepts and basic ideas of the classical multidimensional
model. In the third section we present the basic definitions of
our proposal, i.e. the notion of fact classes and dimension
classes with an adequate domain definition. In the fourth
section we introduce the concept of cube class as an abstract
entity on which data (objects) and operations permitted on it
(them) are encapsulate to allow a subsequent data analysis.
Finally, in the fifth section we present the conclusions and
future works that emerge from this first approach.

2 The classical multidimensional model
throughout an example

We wish to design a MDB for a company whose commercial
activity is devoted to the vehicle sales to different stores. We
wish to know details on the vehicle sales, concretely we wish
to analyze the sold units and which is the sales value.
Furthermore, we wish to know features of the store, vehicle
and date of the sales. Concretely, we wish to know of the
store its name, country, area, city and street where it is
located, of the vehicle its group, family and brand and of the
date its year, semester, month, date and day of the week.

In figure 1 a multidimensional cube is presented to show the
general idea of the multidimensional data model. In each cell
of the cube, we will be able to store the concrete data of the
sales that are studied, i.e. the sold units and their values. This
particular data receives the name of fact attributes or
characteristics (or measures). On the other hand, it can be
observed that the cube has three sides (dimensions), one for
each feature that we wish to analyze, i.e. vehicle, store and
date. Finally, each dimension consists of a number of
attributes (features) called dimension attributes that describe
each dimension in more detail (described in the previous
paragraph).

A last relevant feature of these cubes is the classification
hierarchy that is defined on the attributes along each
dimension, which permits the values of these attributes to be
assembled (classified or aggregated). The oriented arrows in
figure 1 show the attribute classification hierarchy that has
been defined along each dimension. This will allow us to
aggregate attribute values (roll-up operation) or to analyze
them in a larger detail level (drill-down). In our particular
example, we suppose that all the stores in our database are
located in Spain (Spain is divided into four areas, North,
South, East and West). Furthermore, we have currently
located sales in the cities of Alicante, Valencia and Sevilla.
By analyzing the sales with respect to the cities, we can
accomplish a roll-up operation along the store dimension and
from the city attribute to the area one. Thus, we will obtain
the result that we have obtained sales in the East area
(Alicante and Valencia belong to the East area) and in the
South one (Sevilla belongs to the South area). This
classification hierarchy could also be written as
city

�
area

�
country. The reverse operation will be to

crumble those areas to obtain the concrete cities where we
have sold vehicles. Then, we will accomplish a drill-down
operation along the store dimension and from the area
attribute to the city one. Thus, we will obtain the result that
the cities in the East area where we have sold vehicles are
Alicante and Valencia.

 country
 Store area
 city
 Vehicle
 brand
 family
 group

 day, month, semester, year
 Date

Figure 1.

In addition to the operations roll-up and drill-down,
according to [5] we can slice/dice (selection and projection
along one or more dimensions) and pivoting (re-orienting
the multidimensional view of data). Other authors such as
[1] increase the number of operations to apply on the cube
(for example, they propose operations to add and delete a
dimension on a cube).

3 Dimension class and fact class

In the real l ife there are objects that have common
characteristics. Following an OO Paradigm we will group
objects in classes. These classes will encapsulate both static
and dynamic properties of these objects. For example, with
reference to stores, their static properties are that all of
them are located in a city and that a city belongs to a
concrete area and subsequently the store is placed in a
specific country (attributes and their attribute classification
hierarchy). Dynamic properties are the operations that can
be accomplished on objects to change their characteristics
(for example to change the store location). However, we
know that in a context of MDB objects (data) are static in
the sense that once they exist in our system they will not
modify their characteristics (static properties) until they are
carried to an auxili ary store. Therefore, the two first actions
to apply on these objects will be to create and destroy them.

Following the nomenclature of the multidimensional model
and applying the OO paradigm, we will firstly distinguish
among dimension classes (DC) and fact classes (FC). DC
will contain dimension objects (DO) that provide
characteristics of the factual data, while FC will contain
fact objects (FO). The latter classes will be built from DC.
We will firstly introduce the necessary definitions to allow
us to define DC and FC (basic elements in our OOMD
model).

Definition 1 Let attributes (A) be an n-tuple (a1, a2,..., an)
where each element (ai) is a feature that have the objects of
a specific class, i.e. this tuple characterizes the objects of a
class.

Definition 2 Let vi be the set of values or instances that can
be taken by an attribute ai ⊆ A following the definition of
Data Abstract Type (DAT) of ai
Note that we will firstly take into account basic DAT’s
such as string, real, float, integer and so on with their
possible operations.

Definition 3 Let ai ⊆ A an attribute and vi be the set of
possible values (instances) to be taken by ai, we define the
domain function as where for a given attribute
ai, it will return a subset of values (vi’ ⊆ vi) for ai

Definition 4 Let A be a set of attributes being hold by the
objects (elements) of a particular class, we say that the key
attribute (KA) is an attribute ai ⊆ A that defines univocally
every object of that particular class

Definition 5 Let A be a set of attributes being hold by a set
of dimension objects (DO), we define dimension attributes
(DA) as a n-tuple (a1, a2,..., an) that characterizes these DO,
where the KA of these DO is not included in this tuple.

Definition 6 Let A’ ⊆ A be a subset of attributes, we define
an attribute roll -up relation (ARR) as an n-tuple (a1, a2,...,
an) where a partial order relation is defined, such that
a1≤a2≤...≤an and that given two attributes ai,aj such that ai ≤
aj, there is not any ak such that ai≤ak≤aj
Note that this relation can be applied to any subset of A
(A’), even though the KA is within A’ .

We can observe that this relation to allow us to define the
attribute classification hierarchy, i.e. a1

�
a2

�
...

�
an (a1

rolls up to a2, a2 rolls up to a3 and so on, as commented in
the second section)

Definition 7 Let ARR be an attribute roll -up relation, we
define the roll -up domain function as
to obtain the attribute values according to the classification
hierarchy.
Conversely, we define the drill -down domain function as

Definition 8 Let any kind of object be, E is the set of
events (operations) to apply on these objects. These
operations are “ new” and “ delete” to create and destroy
any object respectively.

Definition 9 We define a dimension class (DC) as a tuple
(A, ARR, E), where

• A= KA ∪ DA
• ARR is a possible attribute roll -up relation defined

on A’ , where A’ ⊆ A
• E is the set of events allowed on the class objects,

i.e. “ new” and “ delete”

Example We apply these definitions to the example
presented in section 2. According to this, we will have three
dimension classes, the vehicle dimension class, store
dimension class and date dimension class. We now apply
the previous definitions to only one dimension class (the
store class). The reader can easily apply the definitions to
the rest of the dimension classes.

We will have a store dimension class as the tuple (A, ARR,
E) where,

• A= KA ∪ DA, where,
• KA is the store_code,
• DA=(store_name, country, area, city,

street),

• ARR=(store_name, city, area, country)
• E=(new, delete)

We will then show some examples of how the domroll -up
and domdrill -down functions will operate to obtain
aggregated data, taking into account the different values
that currently exist in the system (see the example in
section 2).

Note that these functions together with the definition of
ARR’s are necessary to express the granularity of data. The
following step is to build the fact class (FC), which will
contain fact objects (FO), from dimension classes. Before
the fact class definition we define the concept of fact
attributes or measures as follows:

Definition 10 Let A be a set of attributes and FO be a set of
fact objects, we define measure or fact attributes (FA) as a
n-tuple (a1, a2,..., an) that characterize these FO, where the
KA of these FO is not included in this tuple. These are the
emerging characteristics that provide specific information
(factual information)

Definition 11 Let DC1, DC2,...,DCn be n dimension classes,
a fact class (FC) from these n dimension classes is a tuple
(A, ARR, E), where

• A= KA ∪ FA, where,
• KA is the key attribute for FO
• FA is the set of fact attributes or measures

• ARR is a possible attribute roll -up relation
defined on a subset of FA (FA’⊆FA).

• E is the set of events allowed on FO, i.e. “ new”
and “ delete”

Example Following the same example, we will obtain the
sales fact class from the vehicle, store and date dimension
classes as the tuple (A, ARR, E) where:

• A= KA ∪ FA, where,
• KA= sales_code
• FA=(sales_number, value),

• ARR=(),
If ARR is an empty relation we will not apply the
functions domroll -up and domdrill -down on fact
class attributes (FA).

• E=(new, delete)

4 Cube classes

Once we have defined the different object classes that we
will have in our system, we proceed to the definition of the
cube classes (CC) to permit a subsequent data analysis. The

ii vadom →:

jji vavupdomroll →− ,:

iij vavdowndomdrill →− ,:

Southareasevillaupdomroll →− ,:

SpaincountryEastupdomroll →− ,:

SpaincountrySouthupdomroll →− ,:

valenciaalicantecityEastdowndomdrill ,,: →−
sevillacitySouthdowndomdrill →− ,:

SouthEastareaSpaindowndomdrill ,,: →−

Eastareaalicanteupdomroll →− ,:

CC can be considered as the classical cube and the objects
belonging to the CC as the data contained in the cube on
which the analysis operations will be applied.

Concerning the CC, their definitions are always based on a
fact class, and therefore, they wil l contain data from
dimension classes. This means that we need n-dimension
classes and one fact class to build this basic CC. With
reference to the operations permitted on the objects of the
CC our approach is twofold. On the one hand, we have the
operations that can create or destroy an object of the class
("new"/"delete"). On the other hand, those that permit
different analysis on the data contained in the CC.

Definition 12 Let DC1, DC2,...,DCn be n dimension classes
and FC be a fact class built from these n dimension classes,
we define a cube class (CC) as a tuple (DC,FC,A,C,E,CE),
where

• DC is the set of dimension classes that have been
used for constructing the fact class

• FC is the fact class from which the cube class has
been built

• A = KA ∪ CFA ∪ CDA where,
• KA is the set of key attributes of the FC.
• CFA is a subset of FA from the FC
• CDA is a subset of the DA from DCi

Note. By defining both dimension attributes and fact
attributes while constructing the CC, we use the
following format: class_name.attribute_name to
allow us to know which object classes every
attribute belongs to.

• C is a condition n-tuple (a1=v1, a2=v2,..., an=vn)
where ai are dimension attributes and vi the set of
values that must fulfill each attribute ai to select
the objects that will integrate this CC.

Note. If ai=aj with vi ≠ vj both kinds of different
objects will be selected.

• E is the set of operations allowed on the objects of
the CC, i.e. “ new” and “ delete” .

• CE is the set of events (operations) permitted on
the cube class, i.e. operations that are applied to
the set of all the cube objects contained in the
class. These operations according to [1] and [5]
will allow the subsequent analysis of the data
contained in the cube achieving an intuitive
navigation on the cube class.

Example Following the class definition provided in the
previous section, we will show an example of a CC
construction. We wish to analyze the sold vehicle number
where the group_of_vehicle is “ four wheels” and the
store_country is “Spain” grouped by the vehicle family and
brand and by the store area and name. According to this
specification, we will construct the following cube class.

A CC on the sales fact class will be the tuple (DC, FC, A,
C, E, CE), where

• DC = store dimension class, vehicle dimension
class

• FC = sales fact class
• A = KA ∪ CFA ∪ CDA where,

• KA = sales_code

• CFA=(sales.number)
• CDA=(vehicle.group, vehicle.family,

vehicle.brand, store.country, store.area,
store.name)

• C=(vehicle.group="four wheel vehicles",
store.country="Spain")

• E=(new, delete).
• CE will be the operations commented in the

previous definition

In Table 1., we show in a more intuitive way (the classical
multidimensional view of data) the result of the previous
example CC construction. The condition C is printed in
bold letters, whereas the result of C (objects
contained/selected in this CC) is printed in normal font. On
the other hand, the attributes shown in this figure are CFA
and CDA, i.e. the KA’s are not shown. Finally, the name of
this cube class (sales) is printed in cursive.

Sales Vehicle.group=”4 wheel vehicles”
trucks Cars
Man BMW OPEL Renault

Sala 10 20 23 52east
Court 20 30 25 74
Vals 10 15 30 24

Store.
country=
Spain

south
Court 41 21 18 27

Table 1.

5 Conclusions and future work

We have presented a first revolutionary OO approach to
MDB conceptual modeling. We have firstly defined the two
basic elements of our OOMD, i.e. dimension classes and
fact classes. We have then defined the cube class (from
dimension and fact classes) to encapsulate both data and
operations allowed on it, which will allow us to accomplish
a subsequent data analysis. From our point of view, the star
model only considers relational tables and therefore, basic
elements of MDB’s such as the classification hierarchy on
attributes along dimensions cannot be expressed. Our
approach, however, provides mechanisms (ARR and
domain functions) to achieve this issue.

This revolutionary approach provides a higher level of
abstraction (encapsulates both data and operations in one
structure) than the models proposed until now as well as a
more restrictive way to a subsequent analysis of the data
contained in the cube. Unlike other models which are either
extensions to the classical multidimensional model or
mappings from the classical database conceptual models
(such as the ER model), our OOMD is an independent and
revolutionary approach since it does take into consideration
neither any of these assumptions nor any subsequent
implementation.

We are currently extending the cube class set of operations
to allow us to accomplish a subsequent data analysis as
well as being able to construct a cube class hierarchy, i.e.
being able to build a cube from others. We are also
extending the cube class definition to allow us to define the
cube class from n fact classes instead of only one. On the

other hand, we wish to provide a rich conceptual model and
its graphical user interface to facilit ate the definition of our
OOMD structures (to make the model more intuitive) as
well as to provide an easy set of point-and-click operations
to accomplish a subsequent data analysis. By finishing
these and other extensions that are currently being carried
out, we wish to extend this conceptual model to a formal
logical model. In conclusion, we fairly believe that this first
OOMD approach is a solid basis for solving the MDB
conceptual modeling problems derived from the lack of a
formal and independent general conceptual model. Our
attempt is to provide a more intuitive and complete
conceptual model than the “star model” providing the
necessary mechanisms to consider all relevant aspects of
MDB’s.

Acknowledgements

We want to thank Dr. J. Samos and the anonymous
reviewers of the DOLAP workshop (CIKM’98) for their
detailed comments, which helped us improve this paper

6 References

[1] Agrawal, R., Gupta, A., Sarawagi, S., “ Modeling
Multidimensional Databases” . In 13th Intl. Conf.
On Data Engineering, (ICDE’97), pages 232-243,
Birmingham, U.K., April . 1997.

[2] Archer Decision Sciences. “ Star Schema 101“ .
http://www.netmar.com/~nraden/

[3] Cabibbo, L., Torlone, R., “ Querying
Multidimensional databases” . In 6th Int. Workshop
on Database Programming Languages. (DBPL’97),
1997.

[4] Cabibbo, L., Torlone, R., “ A Logical Approach to
Multidimensional Databases” . Lecture Notes in
Computer Science, number 1377 in proc. of the 6th

Int. Conf. On Extending Database Technology,
(EDBT’98), pages 183-197. Valencia, March.1998

[5] Chaudhuri, S, Dayal, U., “ An Overview of Data
Warehousing and OLAP technology” . ACM
Sigmod Record vol. 26 (1), March 1997

[6] Codd, E.F.,Codd, S.B., Salley C.T., “ Providing
OLAP (On-Line Analytical Processing) to User
Analyst: An IT Mandate” . Available from Arbor
Software’s web site <http://www.arborsoft.com
/OLAP.html>

[7] Golfarelli , M., Maio, D., Rizzi, S. “ Conceptual
Design of Data Warehouses from E/R Schemes” . In
the 31st Hawaii conference on System Sciences,
1998.

[8] Gray, J., Bosworth, A., Layman, A., Pirahesh, H.
“ Data Cube: A Relational Aggregation Operator
Generalizing Group-by, Cross-Tab and Sub
Totals” . Data Mining and Knowledge Discovery
Journal, Vol. 1 No 1, 1997.

[9] Gyssens, M., Lakshmanan, L. “ A Foundation for
Multi -Dimensional Databases” . In the 33rd Intl.
Conf. On Very Large Database Conference
(VLDB’97). Pages 106-115. 1997

[10] Hammer, J., Garcia-Molina, H., Widom, J., Labio,
W.J. and Zhuge, Y. “T he Standford Data
Warehousing Project” . IEEE Data Engineering
Bulleting, Special issue on Materialized Views and
Data Warehousing Project. June 1995

[11] Inmon, W. H., “ Building the Data Warehouse” .
John Wiley, 1992

[12] Kimball , R. “ The data warehousing toolkit” . John
Wiley, 1996

[13] Kimball , R., “ A Dimensional Modelli ng Manifesto”
http://www.dbmsmag.com

[14] Labio,W. L., Zhuge, Y., Wiener, J.L., Gupta, H.,
Garcia-Molina, H., Widom, J., “T he WHIPS
Prototype for Data Warehouse Creation and
Maintenance” . ACM Sigmod Record in Intl. Conf.
on Management of Data (CIKM’97). Arizona. May
1997

[15] Lehner, W., “ Modelli ng Large Scale OLAP
Scenarios” . Lecture Notes in Computer Science,
number 1377 in proc. of the 6th Int. Conf. On
Extending Database Technology, (EDBT’98),
pages 153-167. Valencia, Spain. March, 1998.

[16] Li, C., Wang, X., “ A Data Model for Supporting
On-Line Analytical Processing” . In Intl. Conf. on
Information and Knowledge Management,
(CIKM’96), pages 81-88. Nov., 1996

[17] Mendelzon, A., “ A Research-Oriented
Bibliography (in progress)” .
<http://www.cs.toronto.edu/~mendel/dwbib.html>

[18] Redbrick Systems. “ Star Schemas and Star Join
Technology” . White paper. <http://www.redbrick.
com/> August 1996

[19] Space Consultancy. Data Warehousing- Rodin
Overview. “ What is data warehousing and Why do
we need it ?” . <Http://www.spacepp.co.uk/
noframes/datawhs/rodin/broch.htm>

[20] Widom, J., “ Research Problems in Data
Warehousing” . In the 4th Intl. Conf. On Information
and knowledge Management (CIKM’95), Nov.
1995

[21] Wiener, J.L., Gupta, H., Labio, W.J., Zhuge, Y.,
Garcia-Molina, H., and Widom, J. “ A System
Prototype for Warehouse View Maintenance.” In
the Workshop on Materialized Views: Techniques
and Applications, pages 26-33, Montreal, Canada,
June, 1996

