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Abstract

On-Line Analytical Processing (OLAP) isatrend in
database technology, which was recently introduced and
has attracted the interest of a lot of research work.
OLAP is based on the multidimensional view of data,
supported either by multidimensional databases
(MOLAP) or relational engines (ROLAP).

In this paper we propose a model for
multidimensional databases. Dimensions, dimension
hierarchies and cubes are formally introduced. We also
introduce cube operations (changing of levels in the
dimension hierarchy, function application, navigation
etc.). The approach is based on the notion of the base
cube, which is used for the calculation of the results of
cube operations. We focus our approach on the support
of series of operations on cubes (i.e. the preservation of
the results of previous operations and the applicability of
aggregate functionsin a series of operations).

Furthermore, we provide a mapping of the
multidimensional model to the relational model and to
multidimensional arrays.

1. Introduction

In recent database trends, data warehouses come to
fill a gap in the field of querying large, distributed and
frequently updated systems. Most researchers and
developers dhare the same general vision of what a data
warehouse is [19], [3]. Data ae extracted from severa
data sources, cleansed, customized and inserted into the
data warehouse. The logical structure and semantics of
the data, or else Enterprise Model, is gored in an
Information Directory. Next, the data warehouse data
can be filtered, aggregated and stored in smaller
spedalized data stores, usually called data marts. Users
guery the data marts and/or the data warehouse, mostly
through On Line Analytical Processng (OLAP)
applications. The main characteristics of such
applications are (a) multidimensional view of data, and
(b) data analysis, through interactive and/or navigational
querying of data [6].

The multidimensional view of data considers that
information is gdored in a multi-dimensional array
(sometimes called a Hypercube, or Cube). A Cube is a
group of data cdls arranged by the dimensions of the
data[13]. A dimension is defined in [13] as "a structural
attribute of a cube that is a list of members, all of which
are of a similar type in the user's perception of the data’.
Each dimension has an associated hierarchy of levels of

aggregated datai.e. it can be viewed from different levels
of detail (for example, Time can be detailed as Year,
Month, Week, or Day). Measures (which are a'so known
as variables, metrics, or facts) represent the real
measured values [6].

To motivate the work describing this paper, let us
use a running example of a bodkstore wmpany. When
considering the sales of this company, threeare the major
dimensions. Time, Geography and Item, while we
consider Sales as the measure of the multidimensional
cube. The dimensions, along with their dimension levels
are depicted in Figure 1, where the upper levels of each
hierarchy point to the lower lewels:

Geography Region | country .| City
Item Category | Type | Product
Time Yea - | Month | Day

Week :

Sales Sales

Figure 1. Dimensions and dimension levels

Consider, now, the way dimension level hierarchies
are instantiated in the rea world (we nsider the
instantiation for dimension Time, to be obvious):

Category Type Product

Books Literature “Report to El Grea” N. Kazantzakis

“ Karamazof brothers’ F. Dostoiewsky

Philosophy | “Zarathustra”, F. W. Nietzsche
“ Symposum”’, Plato
Music Heavy “Pieceof Mind’, Iron Maiden
Metal

“ Aceof Spades’, Motorhead

Figure 2. Item dimension

Region Country City
Europe Hellas Athens
Rhodes
France Paris
Asa |lsrael Te Aviv
Japan Tokyo

Figure 3. Geography dimension
Navigation is a term used to describe the processes
employed by users to explore a cube interactively, by
manipulating the multidimensionally viewed data [6],



[13]. Possible operations which can be applied are
Aggregation (or Consolidation, or Roll-up) which
corresponds to summarization of data for the higher level
of a hierarchy, Roll Down (or Drill down, or Drill
through) which allows for navigation among levels of
data ranging from higher level summary (up) to lower
level summary or detailed data (down), Selection (or
Screening, or Filtering or Dicing) whereby a criterion is
evaluated against the data or members of a dimension in
order to restrict the set of retrieved data, Sicing which
allows for the selection of al data satisfying a condition
along a particular dimension and Pivoting (or Rotation)
throughout which one can change of the dimensional
orientation of the cube, eg. swapping the rows and
columns, or moving one of the row dimensions into the
column dimension, etc. [6], [13].

Two are the basic architectures for storing datain an
OLAP database ROLAP and MOLAP. ROLAP
(Relational OLAP) [3] is based on a relational database
server, extended with capabilities such as extended
aggregation and partitioning of data [8]. The schema of
the database can be a sar, snowflake, or fact
constellation schema [3]. On the other hand, MOLAP
(Multidimensional OLAP) is based on "pure'
Multidimensional Databases (MDDs), which logically
store data in multidimensional arrays, which are heavily
compressed and indexed, in the physical level, for space
and performance reasons.

The main motivation of this paper is to provide a
formal model for multidimensional databases. Since
multidimensional databases are defined in terms of
dimensions (which are organized in dimension
hierarchies), the model represents them formally.
Furthermore, classical OLAP operations, such as roll-up,
dice, dice etc. are also represented by the model. We also
provide a mapping to reational databases and
multidimensional arrays. We make a serious design
choice: since querying is done in an interactive way, we
give emphasis to the tracking of series of operations,
performed in a navigational way.

The major contribution of the paper is the modeling
of cubes, dimensions and cube operations, in the context
of series of operations. This formalization is currently
used, in this paper, for a direct modeling of the usua
OLAP operations. Instead of mapping OLAP operations
to complex and complicated "relational”, or "calculus-
like" queries, we directly model them, in a
straightforward fashion. To our knowledge, the modeling
of the drill-down operation isintroduced for the first time
in our model. Since engines are based on relationa
technology, or multidimensional arrays, we also provide
adirect mapping of cubes and their operations for each of
these formalisms, so that both data warehouse designers
and the engines themselves can take advantage of it.

The rest of this paper is organized as follows: in
section 2 we present related work in the fields of models
and algebras for data warehouse and OLAP applications.
In section 3 we provide a model for multidimensional
databases and cubes. In section 4 we provide a relational

mapping of the aforementioned model and a mapping to
multidimensional arrays. In section 5, we present the
conclusions of our work and possible future extensions.

2. Related work

Research has followed the evolution of industrial
products in the field of OLAP. The data_cube operator
was introduced in [8]. There have also been efforts to
model multidimensional databases. In [1], a model for
multidimensional databases is introduced. The modd is
characterized from itssymmetric trestment of dimensions
and measures. A set of minimal (but rather complicated)
operatorsis also introduced dealing with the construction
and destruction of cubes, join and restriction of cubes and
merging of cubes through direct dimensions.
Furthermore, an SQL mapping is presented.

In [12] a multidimensional data modd is introduced
based on relational € ements. Dimensions are modeled as
"dimension relations’, practically annotating attributes
with dimension names. The cubes are modeled as
functions from the Cartesian product of the dimensions to
the measure and are mapped to "grouping relations'
through an applicability definition. A grouping algebrais
presented, extending existing relational operators and
introducing new ones, such as ordering and grouping to
prepare cubes for aggregations. Furthermore, a
multidimensional algebra is presented, dealing with the
construction and modification of cubes as well as with
aggregationsand joins.

In [9] n-dimensional tables are defined and a
relational mapping is provided through the notion of
completion. An algebra (and an equivalent calculus) is
defined with classical relational operators as well as
restructuring,  classification and  summarization
operators. The expressive power of the algebra is
demonstrated through the expression of operators like the
data cube operator and monotone roll-up.

In [2] multidimensional databases are considered to
be composed from sets of tables forming denormalized
star schemata. Attribute hierarchies are modeled through
the introduction of functional dependencies in the
attributes of the dimension tables. Nevertheless, this
work is focused on the sdection of an optimal set of
materialized views, for the efficient querying and update
of a data warehouse, and not in the modeling of cubes or
cube operations.

In [4], a multidimensional database is modeled
through the notions of dimensions and f-tables.
Dimensions are constructed from hierarchies of
dimension leves, whereas f-tables are repositories for the
factual data. Data are characterized from a set of roll-up
functions, mapping the instances of a dimension leve to
instances of ancther dimension level. A query language
is the focus of this work: a calculus for f-tables along
with scalar and aggregate functions is presented,
basically oriented to the formulation of aggregate queries.
In [5] the focus is on the modeling of multidimensional
databases: the basic modd remains practically the same,



whereas ER modeling techniques are given for the
conceptual modeling of the multidimensional database.

In statistical databases [17], quite a lot of similar
work has been done in the past. In [17] a comparison of
work done in statistical and multidimensional databases
is presented. The comparison is made with respect to
application areas, conceptual modeling, data structure
representation, operations, physical organization aspects
and privacy issues. The basic concluson of this
comparison is that the two areas have a lot of overlap,
with dtatistical databases emphasizing on conceptua
modeling and OLAP emphasizing on physica
organization and efficient access.

In [14] a data model for statistical databases is
introduced. The model is based on "summary tables' and
operators defined on them such as
construction/destruction, concatenation/extraction,
attribute splitting/merging and aggregation operators.
The underlying algebra is a subset of the algebra
described in [15]. Furthermore, physical organization
and implementation issues are discussed. [14] is very
closeto practical OLAP operations, although discussed in
the context of summary tables.

In [16] a functional modd ("Mefisto") is presented.
Mefisto is based on the definition of a data structure,
called "datistical entity" and on operations defined on it
like summarization, classification, restriction and
enlargement.

In al of the aforementioned approaches the
relationship of the proposed operators to real OLAP
operations, such as roll-up, drill-down, dice and dice
seems to be weak: it is either discussed informally for a
subset of operators [1], indirectly dealt through the
introduction of aggregation [12], [9], or in a different
context [14], [16]. [2] and [5] are basically dealing with
the modeling of cubes. The best approach seems to be
given in [5]; yet a direct mapping to OLAP operations is
gtill not provided. Furthermore, apart for [16], series of
operations are not directly dealt with. Finally, to our
knowledge, no explicit modeling of the drill-down
operation exists.

3. A modd of multidimensional space and
cubes

3.1. Multidimensional space

Let 2 be the space of al dimensions. For each
dimension D; there exist a set of levels, denoted as
levels(D;). A dimension isalattice (H, <) of levels. Each
path in the lattice of a dimension hierarchy, beginning
from its least upper bound and ending in its greatest
lower bound is called a dimension path. Each dimension
path is a linear, totally ordered list of levels. We extend
the notion of the function levels, for dimension paths:
levels(Dy,) isalist, where the higher a level semantically
is, the higher itsrank isin the dimension path. The tota
order alows us to use comparison operators for the
dimension levels. For instance, if we consider the

dimension path [year, month, day], then day < month <
year, whereas for the dimension path [year, week, day],
day < week < year holds. A dimension D consists of a set
of dimension paths, paths(D). In the case of linear
dimensions, where thereisa single dimension path in the
dimension, we will use the terms dimension and
dimension path interchangeably.

Let ¥ be the space of al dimension levels. We can
find the dimension where a dimension level belongs to,
through the operator h: h(DL;) = D if DL; O levels(D).
We impose the restriction that a dimension level belongs
to exactly one dimension. Furthermore, we can find the
rank of a dimension level in a dimension path, through
the function level(DL;). level(DL;) = k, when DL; =
levels(Dyi)[K] (in other words, DL; is the k-th level of the
dimension path Dy, starting the enumeration from the
lowest levels).

For each dimension level there is a set of values
belonging to it (e.g. dimension level "city" has "Athens’,
"Paris’, "Rome"... as values). We define dom(DL;) as the
set of all the values of a dimension level DL,. Let V be
the space of al values. A dimension leve is atomic if its
domain is a subset of V. If the domain of a dimension
level is a subset of P(V) (the power set of V) then the
dimension level is multi-valued. We use bag semantics
for multi-valued dimension levels. Asin [15], we use the
prefix "*" for multi-valued attributes.

A value x, can have ancestors and descendants. Let
x belong to a specific dimension leve Ly, then, there are
specific ingtances related to X, at higher (lower)
dimension levels, corresponding to more general
(detailed) terms, that is
ancestor(x, DL) =y, y 0 dom(DL), DL, < DL and
descendants(X, DL) = {X1, Xz, ..., X}, X1, X2, «ory X¢ O

dom(DL), DL < DL,,.

For example, if we consider the dimension path
[year, month, day] then ancestor(FEB 1997, year) = 1997
and descendants(FEB 1997, day) = {1 FEB 1997, 2 FEB
1997, ..., 28 FEB 1997}. We will assume the following
properties for the ancestor relationship:

1. ancestor(x, DL) = x, if x 0 dom(DL)

2. if x = ancestor(y, DL) and y = ancestor(x, DL), then x
=y

3. if x=ancestor(y, DL,) and y = ancestor(z, DL,), then
X = ancestor(z, DL,)

The third property guarantees that when more than
possible paths exist from z to x, in the dimension level
lattice, then all these paths are consistent.

3.2. Cubes

In this section we shall introduce the notion of
cubes, basic cubes and multidimensional databases. The
cubes are the basic entities of the model, whereas basic
cubes are cubes with the most detailed data A
multidimensional database is a set of dimensions,
dimension levels and a basic cube.

We define a basic_cube C, as a 3-tuple <Dy, Ly,
Ry,>, where



e Dy=<D,, Dy ... D, M>isalist of dimensions (D;,
M O Q). M is a dimension that represents the
measure of the aibe.

e L, = <DLyy, DLpy, ... DLy, *ML> is a list of
dimension levels (DLy, *ML O ¥). ML is the
dimension level of the measure of the aibe. We
demand that all the dimension levels are at the lowest
level of their respedive dimensions (O DL, O Ly,
level() = 1). We dso demand that ML is multi-
valued.

* R, isaset of cell data -i.e. aset of tuples of the form
X = [Xg, X2y «oey Xn, *m], where 1 in [1, .0], X [
dom(DLy;) and *m [Jdom(* ML).

We define a Cube C as a 4-tuple <D, L, Cy, R>,
where
e D=<Dy, D, ..D, M>isaligt of dmensions (D;, M

0 2). M isadimension that represents the measure of
the albe. We  will denote M as
measure_dimension(C).

e L =<DL4, DLy, ...DL,, *ML> isalist of dimension
levels (DL;, *ML O ¥). *ML isthedimension level of
the measure of the aibe. We will denote *ML as
measure_dimension_level (C). We demand that O DL,
O L, DL; O levels(Dy). As it will be shown from the
cube operations, we also demand that *ML is multi-
valued.

e Cyisabasic_cube. We will call C,, the base cube of
C (C, = base_cube(C)). The data of C, can be used
for the @lculation of the mntents of C. Furthermore,
we impose therestriction, that 0d 0 C.D Od O Cp.D
:d =d. In other words, all the dimensions of a cube
must exist in its base_cube.

* Risasetof cdl data-i.e aset of tuplesof theform as
atuplex = [Xg, Xz, ..., Xn, *m], where [Ji in[1, ..n], X;
[Jdom(DL;) and *m [Jdom(* ML).

We @n consider basic aubes as cubes. We etend
the definition of a basic aube Cy, to be a 4-tuple <Dy, Ly,
Cp, Ry> -i.e. we define a basic aube to ke the base cube
of itsdlf.

We define a Multidimensional Database as a couple
<D, C>. D isa set of dimensions and C is a basic aube,
the dimensions of which belong to D.

Cell data are the data of a cube. Each cdl is defined
by a set of values and a measure, which is also a value.
Thus, a cdl x is atuple X = [Xg, X2, ..., %y, *m]. We
introducethe foll owing shortcut notations:
dimensions(x) = <X, Xp, ..., Xp>,
measure(x) = *m,
dimensions(x)(i) = x, where C= <D, L, C,, R> J(x [J

R),

dimensions(x)(d) = x;, where C= <D, L, Cp,, R> [Jd [JD

0d=D(i) O OR).

In our running example, let us consider that a
basic_cube for the bodkstore mmpany is instantiated as
shown in Figure 4.

Intuitively, it might strike the reader as drange the
fact that we define a cube in terms of another cube and
that we practically provide two data sets (R and Cp.Ry)
for the instantiation of a single aibe. Nevertheless there

are two major reasons for which we choase to follow this
spedfic approach:

Time Item Geogr aphy Sales
199701-01 “Report to El Gre” Rhodes 15
199701-01 “Aceof Spades’ Paris 8
199701-01 “Report to El Gre” Athens 11
1997-02-06 “ Symposum” Rhodes 7
199702-18 | “Karamazof brothers’ Paris 5
199702-18 “Report to El Gre” Athens 2
199703-03 | “Karamazof brothers’ Rhodss 4
199703-03 | “Karamazof brothers’ Athens 10
199703-28 “ Symposum” Rhodes 5
199610-12 “Report to El Gre” Paris 7
199605-06 “Pieceof Mind’ Tokyo 10
199609-07 “Pieceof Mind’ Rhodes 7
199603-28 | “Karamazof brothers’ Te Aviv 12
199601-01 | “Karamazof brothers’ Te Aviv 40

Figure 4. Basic_Cube = <D0, L0, Basic_Cube, RO>, DO
=<Time, Item, Geography, Sales>, L0 = <Day,
Product, Region, Sales>, RO is shown in the above
table

First, the definition of the data of a cube in terms of
its base_cube enables the dired and corred evaluation of
its contents. A spedfic example will help us clarify this
statement. Suppose, that we summarize the sales of
Figure 4 at the month level. Suppose then, that we would
like to seethe average sales at the year level. This result
cannot be diredly calculated from the result of the
previous cube. The &isting algebras that we know of [1],
[12], [LR97] would not take this problem into account, or
would asaime that the operation will be disallowed by the
system [16]. Sincethis kind of sequences of operations is
typical for OLAP applications, the rredness of the
result of the operations of the abe @n be guaranteed, by
referring to the relevant data of the most basic
granularity.

Sewmndly, al the aforementioned algebras cannot
deal diredly with drill-down operations (i.e. with
navigation to lower levels of dimension hierarchies). This
is obvious, since a sum cannot be analyzed to its
components unless a join operation with a cube of the
required granularity takes place As it can easly be
anticipated, the definition of a cube in terms of a basic
cube enables the drilli ng-down without possbly costly
join operations with other cubes. As it will be shown in
the sequd, in the @se of the relational mapping of our
model (which can be used for ROLAP), joins actually
take place yet they are made tetween a fact table and the
tables representing the dimensions of the abe
Techniques like star-join [7] can be employed to
optimize thiskind of operations.

3.3. Cube operations

The definition of a cube is accompanied with the
definition of cube operations. We ategorize albe
operations into smple ones, such as level_climbing,
packing, function_application, projection, dicing and
complex ones, such as navigation and slicing, which are
defined on top of the simple ones. We do not deal with
pivoting since we mnsider it to be just a reorganization



of the presentation of the data, rather than a modification
of their value or structure. Each one of the operations
results in a new cube, when applied to an existing cube.
Sicing and navigation apply aggregate functions to the
data of the aibe. The set of allowed aggregate functions
is {sum, avg, court, min, rank(n), no-operation}. All of
them are the well known relational aggregate functions,
except for no-operation which means that no function is
applied on the data of the aibe and rank(n) which returns
the first n-components of an aggregated set of values
which can be ordered. In the sequel we will suppose that
theoriginal cubeC=<D, L, C,, R>, D =<D;, Dy, ...,Dy,
M>, L = <DLy, DLy, ...,DL,, *ML>, C, = <Dy, Ly, C,,
Ry,> and that the new cube C', which is the result of the
operationsisC'=<D', L', C,', R'>.

Level Climbing. Let d be a sat of dimensions
belonging to C and dl the set of the @rresponding
dimension levels of C. Without loss of generality we
asaime that d consists of the last k dimensions of D. Let
also dlyq bethe original dimension levels of C, belonging
to g . ﬂold = {DLn—k+ll vy DLn} Then, C' =
Levé_Climbing(C, d, dl) = LC(C, d, dl) is defined as
foll ows:

D'=D, Ll:L-ﬂddDﬂ, Cbl:Cband
R ={x | Oy O R: dimensions(x)(D;) = dimensions(y)(D;)

O Db O d 0O dmensonsx)(D) =

ancestor (dimensions(y)(Dj), dl;), O D; O d, di; O dl,

dl; O leves(D;) O measure(x) = measure(y), if M O

d}

We impose the restrictions that d, dl are mnsistent
with each other and that for all the dimension levels of
dl, the respedive dimension levels of dl4 belong to the
same dimension path and are of lower or equal level (for
example, one annot perform Levd_Climbing between
months and weeks). Intuitively, Levd_Climbing is the
replacement of all values of a set of dimensions with
values of dimension levels of higher level. In Figure 5, an
example of the Leve_Climbing operation is presented:

Time Item Geogr aphy Sales
1997 “Report to El Gre” Europe 15
1997 “ Aceof Spades’ Europe 8
1997 “Report to El Gre” Europe 11
1997 “ Symposium” Europe 7
1997 “ Karamazof brothers’ Europe 5
1997 “Report to El Gre” Europe 2
1997 “ Karamazof brothers’ Europe 4
1997 " Karamazof brothers’ Europe 10
1997 “ Symposium” Europe 5
1996 “Report to El Gre” Europe 7
1996 “Pieceof Mind’ Asa 10
1996 “Pieceof Mind’ Europe 7
1996 “ Karamazof brothers’ Ada 12
1996 “ Karamazof brothers’ Asa 40

Figure 5. C1 = LC(Basic_Cube, {Geography, Time},
{Region, Year}), C1 =<D1, L1, Cp1, R1>, D1 =<Time,
Item, Geography, Sales>, L1 = <Year, Product,
Region, Sales>, Cp1 = Basic_Cube, R1is shown in the
above table

Packing. We define C' = Packing(C) = P(C) as
foll ows:

D'=D,L'=L,Cy)=Cyand

R ={x | Oy O R: dimensions(x)(D;) = dimensions(y)(D;)
Oi0D1 ..,nOmeasurex) = {I |0t 0OR,
dimensions(y) = dimensions(t) 0| = measure(t)}}
Intuitively, packing is the @mnsolidation of the aibe,

through the merging of multiple instances having the

same dimension values into oe. Packing has bag

semantics. In Figure 6, an example of the Packing

operation is presented:

Time Item Geogr aphy Sales
1997 “Report to El Gre” Europe 15,11, 2
1997 “ Aceof Spades’ Europe 8
1997 “ Symposium” Europe 7,5
1997 “ Karamazof brothers’ Europe 5,4,10
1996 “Report to El Grem” Europe 7
1996 “Pieceof Mind’ Asa 10
1996 “Pieceof Mind’ Europe 7
1996 " Karamazof brothers’ Asa 12,40

Figure 6. C2 = P(C1), C2 = <D2, L2, Cp2, R2>, D2 =
<Time, Item, Geography, Sales>, L2 = <Year, Product,
Region, Sales>, Cp2 = Basic_Cube, R2 is shown in the

above table

Function_Application. Let f be a function
belonging to {sum, avg, court, min, rank(n), no-
operation}. Then, C' = Function_Application(C, f) =
F(C, f) isdefined asfoll ows:

D'=D,L'=L,C, =Cyand

R ={x | Oy O R: dimensons(x) = dimensions(y) O
measure(x) = f(measure(y)) }

Intuitively, Function_apgication is the application
of a spedfic function to the measure of a cube.

Projection. Let d be a projeded dmension. C' =
Projedion(C, d) = z(C, d) isthen defined, asfoll ows:
D'=D-d,L'=L-DL,DL Oleves(d), DL O L,

Cy = <Dy, Lv, Cy', Ry™>, where,

DbI = Db - d,

Ly =Ly - levds(d)(1), and

Ry = {x | Oy O Ry, dimensions(x)(D;)
dimensons(y)(D;), O D; #d, i O 1, ..., n O
measure(X) = measure(y)}

R ={x | Oy O R: dimensions(x)(D;) = dimensions(y)(D;),
OD;j#d, i 01, ..., nOmeasure(x) = measure(y) }
Intuitively, projedionis the deletion of a dimension

bath from the aube and itsbase cube.

Navigation. Let d be the dimension over which we
navigate, dl the target level of the navigation and f the
appli ed aggregate function. Suppose that the dimension d
is the i-th element of D. Then, we define C' =
Navigation(C, d, dI, f) asfoll ows:

C' = Navigation(C, d, dI, f) = F(P(LC(C,, {D4, Dy, ..., d,

..., Dp}, {DLy, DLy, ...,dI, ...,DL} )),f)

The purpose of the navigation operator is to take a
cube from a spedfic state, change the level of a spedfic
dimension, pack the result and produce a new cube with
a new state, through the use of an aggregate function.
The dimensions of the new cube are the dimensions of
the old one. The dimension levels are also the same,
except for the one of the dimension where we cange



level. Notice that the redtrictions imposed by

Leveé_Climbing, regarding the position of the respedive

dimension levels in the dimension lattice, <till hold.

Furthermore, the base cube remains the same. The

Navigationis performed at the level of the base_cube, for

reasons that will be best illustrated in the following

example:

C3 = Navigate(Basic_Cube, Geography, Region,
no_operation)

C4 = Navigate(C3, Time, Year, sum)

C5= Navigate(C4, Time, Month, avg)

Time Item Geogr aphy Sales
19970101 “Report to El Gre” Europe 15,11
199701-01 “ Aceof Spades’ Europe 8
1997-02-06 “ Symposium” Europe 7
199702-18 | “Karamazof brothers’ Europe 5
199702-18 “Report to El Gre” Europe 2
199703-03 | “Karamazof brothers’ Europe 4,10
199703-28 “ Symposium” Europe 5
199610-12 “Report to El Gre” Europe 7
199605-06 “Pieceof Mind’ Ada 10
199609-07 “Pieceof Mind’ Europe 7
199603-28 | “Karamazof brothers’ Asa 12
199601-01 | “Karamazof brothers’ Ada 40

Figure 7. C3 = Navigation(Basic_Cube, Geography,
Region, no_operation), C3 =<D3, L3, Cp3, R3>, D3 =
<Time, Item, Geography, Sales>, L3 = <Day, Product,

Region, Sales>, Cp,3 = Basic_Cube, R3 is shown in the

above table
Time Item Geogr aphy Sales
1997 “Report to El Gre” Europe 28
1997 “ Aceof Spades’ Europe 8
1997 “ Symposium” Europe 12
1997 “ Karamazof brothers’ Europe 19
1996 “Report to El Gre” Europe 7
1996 “Pieceof Mind’ Ada 10
1996 “Pieceof Mind’ Europe 7
1996 “ Karamazof brothers’ Ada 52

Figure 8. C4 = Navigation(C3, Time, Year, sum), C4 =
<D4, L4, Cp4, R4>, D4 = <Time, Item, Geography,
Sales>, L4 = <Year, Product, Region, Sales>, Cp4 =
Basic_Cube, R4 is shown in the above table

Time Item Geography Sales
199701 “Report to El Gre” Europe 13
199701 “ Aceof Spades’ Europe 8
199702 “ Symposium” Europe 7
199702 " Karamazof brothers’ Europe 5
199702 “Report to El Gre” Europe 2
199703 " Karamazof brothers’ Europe 7
199703 “ Symposium” Europe 5
199610 “Report to El Gre” Europe 7
199605 “Pieceof Mind’ Asa 10
199609 “Pieceof Mind’ Europe 7
199603 “ Karamazof brothers’ Asa 12
199601 “ Karamazof brothers’ Ada 40

Figure 9. C5= Navigation(C4, Time, Month, avg), C5 =
<D5, L5, Cp5, R5>, D5 = <Time, Item, Geography,
Sales>, L5 = <Month, Product, Region, Sales>, Cy5 =
Basic_Cube, R5is shown in the above table

This example shows that the basic contribution of
the navigation operator is that it can allow any sequence
of operations along the dimension hierarchies. The

navigation from the Basic Cube to cube C5, is

characterized by threefeatures:

1. it preserved the previous navigations -eg. the
navigation to the dimension level of Geography
(Region),

2. it alowed the application of the average function over
a cube whose data was previoudy produced through
the application of a sum function. If the definition of
the navigation was done on the result of the actua
cube, the @rrea calculation of the result would not be
posshble,

3. it adlowed the drilling down at the Time dimension
(i.e. moving dredly from “Year” to “Month” level)
without having to join cubes diredly. The drill -down
operation was mapped to Leve_Climbing upwards in
the Time dimension. The mnsinstency of the values
between different levels in the dimension lattice
guarantees a corred resullt.

Dicing. Let d be the dimension over which we
perform the dicing, ¢ a formula consising of a
dimension, an operator and a value v. We asaume that v
bel ongs to the values of the dimension level of din C and
that o is applicable to d (in the sense presented in [15]) -
i.e. that {<, =} are applied to atomic dimension levels
and {=, O, O} to multi-valued ones). Let o(v) be of the
form d opv. Then, C' = Dicing(C, d, a(v)) is defined as
foll ows:

D'=D,L=L",

Cy' =<Dy, Ly, G, Ry™>, where

Dy = Cb.Db, Ly = Cb.Lb, and

Ry = {X |x O Cy.Ry, X[d] opy =true, y O

descendarts(v, levds(d)(1))}

R ={x|Ox OR, x[d] opV = true}

Intuitively, dicingis a simple form of sdledion. Yet,
it has its impact bah on the abe itsdf and its
base cube. We are allowed to ched for descendants of v
in the base_cube, since ech dimension path ends at a
dimension level of the lowest granularity and the
base cube is in the lowest possble granularity for all
levels.

Slicing. Let d be the dimension which we sliceand f
the applied aggregate function. We define Sicing as
foll ows:

C' = dicing(C, d, f) = F(P(z(LC(Cy, {Dy, Dy, ..., d, ...,

D.}, {DL;, DLy, ...,dI, ...,DL.} ), d)),f)

The purpose of the slicing operator is to take a cube
from a spedfic state, cut out a spedfied dmension and
aggregate over the rest of the dimensions, using an
aggregation function. Notice that all the restrictions of
Leveé_Climbing implicitly hold, without realy affeding
the Sicing operation. In Figures 10, 11, an example of
the Sicing operation is presented.

In this edion we have defined cubes and cube
operations for a multidimensional model. Since in
practice, the multidimensional view of data is supported
from multidimensional (MOLAP) or relational (ROLAP)
engines, in the following sedion we will provide a
mapping of the structures and the operations of the



multidimensional moddl, to the relational model and to
multi dimensional arrays.

Item Geogr aphy Sales
“ Aceof Spades’ Europe 8
“ Karamazof brothers’ Ada 26
" Karamazof brothers’ Europe 6.3
“Pieceof Mind’ Asa 10
“Pieceof Mind’ Europe 7
“Report to El Gre” Europe 8.75
“ Symposium” Europe 6

Figure 10. C6 = Slicing(C4, Time, avg), C6 = <D8, L6,
Cv6, R6>, D6 = <Item, Geography, Sales>, L6 =<
Product, Region, Sales>, R6 is shown in the above

table
Item Geogr aphy Sales

“Report to El Gre” Rhodes 15
“ Aceof Spades’ Paris 8
“Report to El Gre” Athens 11
“ Symposium” Rhodes 7

“ Karamazof brothers’ Paris 5
“Report to El Gre” Athens 2
" Karamazof brothers’ Rhodes 4
" Karamazof brothers’ Athens 10
“ Symposium” Rhodes 5
“Report to El Gre” Paris 7
“Pieceof Mind’ Tokyo 10
“Pieceof Mind’ Rhodss 7

" Karamazof brothers’ Te Aviv 12
" Karamazof brothers’ Te Aviv 40

Figure 11. C6 = Slicing(C4, Time, avg), Cv6 = <Du6,
L6, Cn6, Ry6>, Dp6 = <ltem, Geography, Sales>, L6 =
< Product, City, Sales>, Ry6 is shown in the above
table

4. A mapping of the multidimensional model
to an extended rdational data mod€

In this £dion we map multidimensional cubes,
defined in Sedion 3, to relational tables. For this purpose
we will base our approach on the etended relationa
model and algebra proposed in [15]. Atomic vs. set-
valued attributes' (with bag semantics) are introduced.
Apart from the dasscal relational operations, operations
such as packing (Px(r)) (merging tuples with the same
values for several attributes into e tuple) and
function_application (r[*X, f]) (application of a function
f, to a multi-valued attribute * X) are introduced. A more
detailed presentation for the employed model can be
foundin [18].

The motivation for the relational mapping is double:
on the one hand, the engine performing ROLAP must be
able to map multidimensional to relational entities and
on the other hand, the data warehouse administrator can
be helped to chedk out whether a relational database
fulfill sthe requirements to model a cube (and viceversa -
what kind of database one needs to construct in order to
be able to map a cube to relational tables).

! Thisrequirement doesnat constraint the appli cability of the algebra, since
existing DBM Ss already suppat NF? characteristics. The objed extensions
of the upcoming SQL 3 standard will formalizethiskind of suppart [10].

At the end of the sedion a mapping of our
multidimensiona model to multidimensional arrays
(used as logica structures in engines performing
MOLAP) isaso presented.

4.1. Mapping of cubesto relations

To map multidimensional cubesto relations we need
as prerequisite, the eistence of two mapping functions a
and A. The function a maps a dimension level to an
attribute of a relation, whereas A is its inverse and maps
an attribute to a dimension level. We say that a
dimension level DL represents an attribute A, and vice
versa, if a(DL) = A, and consequently A(A) = DL.

A dimension level can be mapped to more than one
attributes. The reason for this is that in bath star and
snowflake schemata, which are ©mmon for data
warehousing and ROLAP applications, two columns -
posshly related by foreign key constraints in two
different tables, may represent the same entity, due to
normalization. Furthermore, we make the assumption
that an attribute and a dimension level which can be
mapped to ane another, have the same structure (smple
vs. set-valued) and domain.

Definition 1. A relation r, defined over a relation
scheme R(A, Az, ..., Ay, represents a dimension path
D, (denoted also ast = Rp(Dy) ) iff
1. ODL,; Olevels(D,) OA; OR: a(DL;) = A,

2. OA;ORODL; Olevels(Dy): A(A)) = DL;

3. If DLsisthelowest level of Dy, O & O dom(DLg), O A,
0OR, Oexactly onet, t Or: t{A] = ancestor (8, A(Aj)),

4. 0t0Or, OA OR 068, 6 O dom(DLy): t[A] =
ancestor (3, A(A)),

Intuitively, for atable to represent a dimension path,
there must be a one to ane mapping between the table
columns and the dimension levels of the dimension path
(items (1), (2) in definition 1). The instantiation of the
table is such, so that for every value of the lowest
granularity there is atuple with all it s ancestors (item 3).
Furthermore, we require that the table contains no more
tuples than those neeaded to represent the values (item 4).
The tables representing dmension paths are
denormalized structures, commonly employed in star
schemata in data warehouses, they are usualy
encountered with the name dimension tables. For
example, the dimension Geography, which comprises of
a single dimension path, can be represented wsing the
tablein Figure 12

Region Country City
Europe Hellas Athens
Europe Hellas Rhods
Europe France Paris
Ada |srael Tel Aviv
Ada Japan Tokyo

Figure 12. Geography dimension as a table

From the definition of the ancestor operator, and its
transitivity property it follows easily that if we @nsider
the values of two attributes of the same tuple, they are



characterized from an ancestor relationship between
them.

Definition 2. A relation r, defined over a relation
scheme R = (A4, Ay, ..., Ay), isthe base_cube table of a
cube C = <D, L, Cyae, R> (denoted also asr = Rg(C)) iff
1. ODL OCpael, OA; OR: DL = A(A)

2. O X = <Xq, X2, veny Xiety, X > 0 Chase-Rbase, Ot O 12
X[Xi] = t[a(DL,)], where x; O dOfr](DL,)

3. OtOr, t=<a, a, ..., &1, *ar>, UX, X 0 Chase.Roase,
. t[A|] = X[/I(A|)], Wherea, OA,.

Definition 3. A relation r defined over a relation
scheme R = (A, Ay, ..., Ay) is the cube_table of a cube
C=<D, L, Cyaes R> (denoted al'so asr = R¢(C)) iff
1. ODLOC.L, OA OR: DL =A(A)

2. OX=<Xqy Xgy vevy Xiet, Xp> OCR, Ot O r: X[X] =
t[a(DL;)], where x; 0 dom(DL;)

33.0t0r, t=<q, a, ..., a1, *ay>, Ox, x O CR, :
t[A|] = X[/I(A|)], Wherea, OA,.

Intuiti vely, we define atable to be a cube_table of a
cube if the dimension levels of the awbe @n be mapped to
attributes of the table. The measure -which is also a
dimension- is included in this definition (item 1 in
definition 3). The @ntents of a table should be such, that
al cdlsin the result of the aube have an equivaent tuple
in the table (item 2 in definition 3). Furthermore, no
tuples hould exist in the table, where no equivaent cdl
exigtsin the result of the abe (item 3 in definition 3). A
base cube table differs from a cube table in the fact
that its attributes and data can be mapped to the
base_cube of a spedfic aube.

Definition 4. A database d defined over a database
scheme Srepresentsacube C = <D, L, Cyase, R> iff:

1. Od 0D - measure_dimension(C), O dy O paths(d;),
OrO0d:r= RD(dpi)

2. DI‘B Od: g = RB(C)

3. OrcOd:rc= Rc(C)

A st of relations is the dimension tables of a cube,
if for every cube dimension and for every dimension path
of these dimensions (except for its measure) there is a
relevant table in this set, representing the dimension path
(item 1 in definition 4). If the base_cube table of the
cube also exists, then all the aibe operations can be
applied, by using the base cube table (item 2 in
definition 4); remember that several operations in the
multidimensional model have been defined with resped
to the base abe. Furthermore, if there is a table in the
set, being the cube_table of the spedfic aube, then the
data of the aibe @n be diredly accessed through the
cube_table (item 3 in definition 4). In that case we say
that the database represents the abe. Since we have
required that the values of the dimension paths of
different paths in the same dimension, are @nsistent
with each other, then the mnsistency between the values
of the dimension tables for the same dimension, comes
natural.

The full schema for the bodkstore database of our
running example would be:

TI ME_M YEAR, MONTH, DAY)
TI ME_W YEAR, VEEK, DAY)

GEOGRAPHY( REG ON, COUNTRY, CITY)

| TEM CATEGORY, TYPE, PRCDUCT)

DETAI LED_SALES( DAY, PRODUCT,

CITY, SALES)
Supposing that the ingantiantions are performed
corredly, the TIME_M, TIME_W, GEOGRAPHY, ITEM
relations are the dimension tables, whereas the
DETAILED_SALES rdation is the cube table for the
Basic_Cube.

An interesting isaue is that athough our definition
of dimenson tables is based on the notion of
denormalized star schemata our mapping is aso
applicable to fully normalized snowflake schemata, since
that the dimension table of a star schema can be
considered as a view defined on the respedive tables of
the snowflake schema. This is formally proved in [18].
The result is dual: one @n map snowflake schemata to
cubes and vice versa. Furthermore, cube operations can
be mapped to relational operations for a snowflake
schema.

For the rest of this paper, we assume that we have a
cube C = <D, L, Cppees R>, D =<dy, dy, ...,d,, M>, L =
<DL, DLy, ...,DL,, *ML>. We aso assume a database d
defined over the database scheme S = (R¢, Rz, Rp1, Roa,
..., Rpn), an instantiation of S, s= (r¢, I's, o1, b2 -+ [Dn)s
where rc = R(C), where r¢ is defined over Re = (Acy,
Aco, ..., Acn, ACM): g = RB(C), defined over Rg = (AB]_,
Ao, ..., Agn ABM) and O di OD, rp = RD(di), defined
over Rp; = (Aill Ao, ---vAik)-

4.2. Relational mapping of cube operations

In this subsedion we will provide the relationa
mappings for the aibe operations which were introduced
in Sedion 3. For each operation we will provide a
relational expresson for bath the cube table and the
base cube table of the resulting cube. In other words,
we examine the impact a cube operation has on the cdl
data of bath the base cube and the abe itself and
present tables that represent them. All formulas are fully
proved in [18].

In Table 1, one @n seethe relation definitions for
the base cube table for the results of the aibe
operations, where the base cube table changes.
Level Climbing, Packing, Function_Application and
Navigation do not change the base cube of a cube
Consequently, one would normally exped that the
base cube_tablewill not change éther.

The relational mapping of the result of Projection
and Sicing with resped to the base cube of a cube, is
the performance of a projection operation on the relevant
attribute of its base_cube table.

The mapping of Dicing is ©mewhat more complex
than the mappings of other operations. With resped to
the base_cube, what must be done is the mapping of the
parameter value v to its descendants, which are found at
the base cube table. Consequently, we join the
base_cube with the proper dimension table, representing
a dimension path which includes the respedive



dimension level of the diced cube, perform the selection
at the result and then project the attributes of the
base cube table.

As far as the cube tables are mncened, we also
provide a set of formulas, one for each operation. The
cube_tables represent the actual result of an operation,
expresed in a rdation instance For Level_Climbing,
first we projed the dimension tables to the @lumns
corresponding to the dimension levels of the new cube
and the clumns of the old cube. The relational mapping
of the result of Level _Climbing is the join of its
cube_table with all the dimension tables involved in the
changing of levels and the performance of a projedion,
in order to keg just the attributes representing the
corred dimension levels.

C= Ra(C) = rg[Ag1, Ag2, ..., Agkts Akst,
Projection(C, d) | ..., Agn, Agwm], defined over Rg' = (Ag;y,
ABZ! "‘IABk-ll ABk+ll "'IABH,ABM)I

The multidimensional model can trivialy be
mapped to multidimensional arrays, practically in the
same way it isdonein [5]. We asuume that there exists a
mapping function enum(d) between a value d of a
dimension level | and the set of integers. In other words,
for each dimension level, we assgn a unique integer to
each one of its values. The assgnment is done in a
contiguous fashion. Asaresult, each value x = [Xg, X», ...,
Xn, *m], belonging to the cdl data of a cube @n be
considered to be as the njunction of coordinates
[enum(xy), enum(xy), ..., enum(x,)] with value*m.

The abe @n ill be mnsidered to be a 4-tuple C =
<D, L, Chase, R>. We do not nedal to change the aibe
operations either: the only thing that changes is that we
now have an additional way to refer to the cédl data of the
cube.

c= RC(CI) =rc' = (rC ><Iacnk+1 = Acnkss F'Den
Level _Climbing(

. .
w1 > acnke2 = Acnke2 Dok B L0 D

where Ag = a(DLy), DLy O C,dd) Acn=Acn F'on)[ Act Acz, -+ Acnio
Chase-Lbase, DL [ IeVelS(d), disthek- A'chirs, A'cn, ACM] defined over R
th dimension of C. = (Ac]_, Aco, ..y Acnio Acnkstseees
C= Rs(C") = ((re><ap1=ap1 o) [o(V), Acn', Acm), where d consists of the k
Dicing(C, d, Ap))[Ag1, Ay, ..., Agn, Apm] defined last dimensionsof D, rp;' =
o(V)) over Rg' = (Agy, Agy, ---,Agn, Agw), (ro)[a(DLi), Agl, Oi, k<i<n,
and Ap = (X(DLK), DL, OC.L,DL, O defined over Ry' = (ACill Aci)-
levels(d), rp represents d,, d, O C' = Pack(C) R(C") = rc' = Pacu(re), defined over
pa.thS(d), DL, O dp, o' = (rD)[ADl, AD] R = (Ac]_, Aco, ..., Acn, ACMI),
and Ap; = a(levels(d)(1)) where Agy' =
C= Rs(C") = rg[Ag1, Ag2, ..y Ak1, ABK+1, a(measure_dimension level(C")
Sicing(C, d, f) | ..., Agn, Asm], defined over Rg' = (Agy, C'= R(C") =rc' =r*ACM, f] defined
Ag, -y Ak, Akets -+ Agn, Asm), Function_Applica | over R.' = (Act, Acas -5 Acns Acu)s
and Agk = (X(DLK), DL, O Cb'Lbl DLy tion(C, f) WhereA(;Ml =
O level §(d). a(measure_dimension level (C").
Table 1. Base_cube_table for the results of cube C'= RA(C) =rc' =rc[Act, Aca, - Acke1s
operations Projection(C, d) | Acks1, +..nAcn Acwl

The relational mapping of the result of Packing in a
cube, is the performance of a packing operation on its
cube_table, on the attribute representing the measure of
the abe The relationa mapping of the result of
Function_Application, is the peformance of a
function_application operation on the attribute of its
cube_table representing the measure of the aibe. A
projection on the cube_table can modd the results of the
Projection of a cube with resped to itscel data.

Since Navigation and Sicing have been defined as
complex operations, based on other atomic operations,
the application of the relational mappings of the abe
operations which participate at their definition, produces
the formula for the alculation of the cube table of the
product of these operations. Notice that the restrictions
imposed by Level Climbing still hold. The mapping of
Dicing is just the performance of a selection on its
cube_table. All formulas are presented in table 2.

4.3 A mapping of themultidimensional model to
multidimensional arrays

defined over Rcl = (Ac]_, Acz, .
Ack1s Acksts - Acn Acm),
WhereACk = (X(DLK), DL, OL, DLy
O levels(d).

C= R(C) =rc' = (Paem((re ><ae1=as:
Navigation(C, d, |[rp1' < asz=ae2 o2 >< ... ><I apn = Aen
dl, f) ron)[Act, Aca, «.., Acn,
Agvl))[*Asw, f], whererp' =
(ro)[Aei, Ag]Oi, 1<i<n, Agu' =
a(measure_dimension level(C).

C= R(C) = I = rJo(v), Ao] defined
Dici ng(C, d, G(V)) over Rcl = (Ac]_, Acz, ...,Ach' ACM):
and Ap = a(DLy), DL, 0 C.L, DL,
0 levels(d).

C= RC(CI) =rc = (PABM((rB ><IaB1 = AB1
Sicing(C, d, f) b1 B>< asz=aez o2 B< ... >< agn=Aen
on) [ Act Acay -oos Acks, Ackety om
Acn, ABM]))[*ABMI f], Wha'e rDil =
(rDi)[ABi, ACi]D i, 1< i <n, disin
k-th position of the aibe, and Agy' =
a(measure_dimension level(C).

Table 2. Cube_table for the results of cube operations



In the following sedion, we will conclude our
results and preent topics for future work.

5. Conclusions and future work

In this paper we have proposed a mode for
multidimensional databases. Dimensions, dimension
hierarchies and cubes are formally introduced in our
model. We have also introduced simple abe operations,
such as level_climbing, packing, function_application,
projection, dicing and complex ones, such as navigation
and dlicing. Our approach is based on the notion of the
base_cube, which can be used in the cmplex operations
for the a@lculation of the results of the abe operations. A
major motivation for our approach was the support of
series of operations on the aibes (for example, the
preservation of the results of previous operations and the
applicability of aggregate functions in a series of
operations). Efficiency is also targeted, so that
information refinement operations (such as drill -down)
arediredly performed.

Furthermore, we have provided mappings of the
multidimensional moddl (a) to the reational modd,
where abes and dmensions are mapped to relations and
cube operationsto relational algebra operations and (b) to
multi dimensional arrays, through a mapping function.

Apart from the applicability to bah MOLAP and
ROLAP engines, a basic contribution of our approach for
ROLAP engines is that athough a cube is defined in
terms of another cube, in its relational mapping, only the
relational expressons are necessary. For example, if an
OLAP tod isto perform a navigation operation, it is not
obligatory that the result is alwaystemporarily stored; the
definition of a view over the base cube table is
sufficient.

Yet, there are still i ss1es which have not been dealt
with. The relaxation of several constraints imposed
throughout the definiti ons of the paper is a posshble topic
of future research (for example, the relaxation of the
congtraint that the dimension levels of the base cube
must be of level 1). The applicability of existing results of
research on view usability [11] can also beinvestigated in
the framework we have set (espedally since a relational
mapping is provided), in order to gotimize the exeaution
of the operations. For example, if Navigation is to be
performed in aroll-up fashion, one culd possbly use the
cdl data of the abe itsdf, rather than calculating the
new result from the basic aube. Finaly, it is not at all
certain, that the set of cube operations that we provide is
exhaustive, so extensions and new operators are a topic
of future research.
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