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Abstract

Data warehowsing and orntline analytical processng (OLAP) is becoming an
important tod for dedsion making in corporations and aher organizations. It is one
of the main focuses of the database industry. However, the functions and properties of
dedsion suppat system are rather different from the traditional database goplication.
For example, user of decision suppat system may be interested in the trend d certain
data instead of the adual data itself. Another feaure of data warehouse system is
that the anount of data inside is tremendous, which means that the traditional query
process on these data will be very time @nsuming. In this survey paper, we will
mainly discuss ®veral tedhniques used in data warehouse to acceéerate the OLAP
processspeal.

The rest of paper isorganized asfollows. Chapter 1 isthe introduction, in which we
will give an overview of current techndogy used in the aeaof data warehousing and
OLAP. In chapter 2, we will talk about a new aggregation operator which is cdled
Data Cube operator. The Data Cube operator can perform N-dimensional
aggregation. From chapter 3, we will begin to discussone of the most importationis
issue in data warehowsing and OLAP. That is view materidization and view
maintenance.  In chapter 3, a general introduction to the problems and techniques of
materialized views maintenance will be given. In chapter 4, some techniques
developed base on the space onstrain o data warehouse will be discused. In
chapter 5, we will use adynamic view management system to discussthe techniques
of dynamic view seledion and view maintenance
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Chapter 1. Introduction

A datawarehowse is a @lledion d data, which help dedsionr-makersin a wrporation
or organization to make better and faster deasions. It colleds data from various
sub-branches of the @rporation, derived meaningful information from data obtained
from other operational databases using in the sub-branches and other external sources.
For example, alarge corporation headquartered at New Y ork has several sub-branches
aaossthe U.S. A data warehouwse is locaed in the headquarter at New York and it
obtains information d sales, customers, supdiers, etc. from the databases in the
sub-branches. The data warehouse can then derived information like trends of sales
of product, etc. Decisionrmakers in the corporation can use this information to help
making important decisions. The data in a data warehouse ae often modeled in a
multidimensional view, which can be easily conwerted to relaional model.

OLAP is the technique to load and transfer data from external sources to the data
warehouwses, to derive useful information and to suppat queries on such kind o
information. OLAP applicaions are typicdly query intensive. Operations in
OLAP includerollup, dill-down, sice and_dceand pivot

The requirements of data warehouwse and OLAP are quite different from those
traditional databases. In traditional databases, tasks are generally based onshort and
independent transactions. Consistency and recoverability is a main concern in
traditional databases. It neals to handle up-to-date, acarate and cetail ed individual
records. It requires hundeds of megabytes 1 gigabytes of storage [@adty.

However, in data warehouse and OLAP need historicd, summarized and consoli dated
data. The data is collected from cetain gperational databases and aher external
sources. It is query intensive and requiring to hande complex queries with many
scans, joins and aggregates. It requires hundeds of gigabytes to terabytes of storage

cgoacity.

Monitoting & Admnistration

L 11
Metadata
Reposit
postior OLAFP
Servers
@ Diata Warehouse
Externa HIEact e
S OlIrCes Transform
Lioad
Operational Refresh Serve
dbs
Vedb & =
=ESs
Daata soutces

Data Marts T ools

Figure 1.1 Architedure of typical Data War ehousesystem



Figure 1.1 shows the achitedure of a typical data warehouse system. There are
tods to extrad, transform and load data from data sources such as operational
databases in the rporations and aher external sources. The tods will also do
refresh to get up-to-date information to the data warehouse from changes in the data
sources. There is the main data warehouse and some data marts located in regions
neaer to the data sources to share jobs of the main data warehouse for load belancing
and higher availability. The man datawarehoug and the data marts are managed by

one or more warehouse servers (OLAP servers). There is a metadata repository and
monitoring and administration system. There ae dso some front-end tods like
anaysis ols, query tools and data mining taols

The OLAP tods can do dita deaning, which means detecting data anomalies in the
data sources and docorredions to them. Data anomalies include inconsistent field
lengths, inconsistent descriptions, inconsistent value assgnments, missng entries and
violation o integrity constraints. The OLAP tod for load need to do some
preprocessng before the data is adualy stored in the data warehouse. Such
preprocessng includes chedking integrity constraints in the warehouse, sorting,
summarization, aggregation, bulding indices and partitioning data to multiple storage
areas. Thetod for refresh is resporsible for propagating updates of source data to
the data warehouse.

Dimensions: Product, City, Date

o s W 7777777 Hierarchical summarization paths
< Z ’; Industry  Country Year

a5 Juice | ‘

= Cola |=

"g Milk T2 Category State Quarter

As  Cream |z ‘ / \

Toothpaste | s Product City  Mpnth Week
Soap | \/ee

L 23 45 67 Dare

Date

Figure 1.2 Multidimensional view of data

Asthe datain data warehouse is often modeled multidmensionally, we need to have a
look at the multidimensional view of data in data warehousing and OLAP. Figure
1.2 shows an example of such a view. We have numeric measures sich as sales
figures, which are the main ojeds of analysis. A set of dimensions, such as time,
city and poduwct, gives the ontext for the measures. Dimensions are often
hierarchicd in nature. For example, the number 50 in the aube shown in figure 2
means that he salesfigure of Colaon date 1is50in all the dties.

We can nowv have a look at some OLAP operations after we have a glance at the
multidimensional view of datain data warehousing and OLAP. Pivotingisto seled
2 o more dimensions that are used to aggregate ameasure. From figure 2, we can
seled the 2 dimensions Product andDate to aggregate the measure sales figures We

can look at the aggregated sales figures of different product at different date from this
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view. The operationrollupisto take the arrent objed and doa further group-by on
one dimension. For example, after we have pivoted for the 2 dimensions Product
and Date, we can have a further group-by on the dimension Product.  The result will
be aview of aggregated data of different product in al the dates. The operation
drill-down is just the oppasite operation d rollup. The slice and_dce operation is
to reduce the dimensionality of the data. In ather words, it is to take aprojedion d
data on a subset of dimensions for seleded values of the other seledions. From
figure 2, we can dlice and_dce sales figures for the Product Cream to creae atable
that consists of the 2 dmensions City and Date only.

Like in traditional databases, there ae some metadata needed to be stored for the
operation d the data warehouse. Metadata for data warehousing and OLAP can be
clasgfied into 3 main types. Administrative metadata is information recessary for
setting up the data warehouse, like locations of data sources, locaions of data marts,
etc. Business metadata includes businessterms, definitions and data ownership, etc.
Operational metadata are information colleded during operations, like status of data,
and monitoring information, li ke usage statistics and error reports.

Data warehousing is quite arecent field of study among researchers in databases.
Some hat topics in this areainclude data deaning, index seledions, data partitioning,
materiali zed vies and data warehouse management.

In later sedions, we describe the use of data aibe, which is a speda data structure
used in data warehousing and OLAP to represent the multidimensional model of data.
We will aso dscuss ome tedhniques used in materialized views seledion and
maintenanceto speed up queries.



Chapter 2. Data Cube Operator

2.1 Introduction

Data warehousing usualy refers huge anourts of data. The data analysis required are
extrading relevant data from the warehouse, aggregating data and analyzing the
results.

Data extradion and aggregation are common in SQL statements. SQL standard
aggregation functions includes COUNT(), SUM(), MIN(), MAX() and AVG(). To
group the results, we use GROUP BY. Some systems allow more different or even
user-defined aggregation functions. Aggregation and groupng of results is widely
used in database benchmarks. They are not only for data warehousing.

This edionis based on data aube thesis written by Jim Gray et a. and aims at giving
you an overview of the data cube and data cube operators. It starts with the
Introduction, follows by Data extraction and aggregation in SQL, then introduces the
Problems with GROUP BY and explains the CUBE and ROLLUP operators. After
that, it discusses Computing cubes and Maintaining cubes. Finaly, it gives the
Summary.

2.2 Problems with GROUP BY
The GROUP BY relational operator partitions a table into groups. Each groupis then
aggregated by a function. The aggregation function summarizes sme olumn o
groups returning avalue for ead group.
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Figure2.1

Certain forms of data analysis are difficult if not impossble with the SQL constructs.
Threecommon problems are:

» Histograms

* Roll-up Totals and Sub-Totals for drill-downs

* CrossTabulations



The first problem is that GROUP BY does not allow dired aggregation ower
computed categories. For a table Weather with the following attributes, histograms
would be eay if function values were dlowed in the crour BY list. For example, it
would be nice to be ale to group times into days, weeks, or months, and to group
locaions into areas (e.g., US, Canada, Europe,...) in queries

Time (UCT) Latitude | Longitude | Altitude(m) | Temp © | Pres(mb)

27/11/94:1500 | 37:58:33N | 1224528W | 102 21 1009

27/11/94:1500 | 34:16:18N | 27:05:55W | 10 23 1024
Table2.1

If that were dlowed, the following query would give the daily maximum reported
temperature.

SELECT day, nation, MAX(Temp)

FROM weather

GROUP BY Day(T ime) AS day,
Country(Latitude,Longitude)AS nation;

However, Some SQL systems suppat histograms but the standard does not.  Rather,
one must construct a table-valued expresson and then aggregate over the resulting
table. The foll owing statement demonstrates this SQL92 construct

SELECT day, nation, MAX(Temp)
FROM(SELECT Day(Time) AS day,
Country(Latitude, Longitude) AS nation, Temp
FROM Weather ) AS foo
GROUP BY day, nation;

The second poblem is for Roll-Up aggregation a drill-down reports you have to
store each level i.e. subtaal of the aggregation. Reports commonly aggregate data ata
coarse level and then at successvely finer levels. The following report of car sales
shows the idea Data is aggregated by Model, then by Year, then by Color.  The
report shows data aggregated at three bvels. Goingupthe levels iscalled rolling-up
the data. Going down is cdl ed drilli ng-down into the data.

Sales Roll Up by Model by Yea by Color
Sales Sales Sales
Model |Yea [Color |By Model by Model | by Modél
r By Year by Year
By Color
Chevy 199 pladk [50
4
white 40
90
199 plak {85
5
white |115
200
290

Table2.2



The a&owe tableis nat relational —null values in the primary key are not allowed. It
isaso na convenient -- the number of columns grows as the power set of the number
of aggregated attributes. The following table is a relational and more convenient
representation where the dummy vaue "aALL" has been added to fill in the
super-aggregation items.

Sales Summary

M odel Year Color | Units
Chevy 1994 | bladk 50
Chevy 1994 |white |40
Chevy 1994 |ALL 90
Chevy 1995 |bladk 85
Chevy 1995 |white 115
Chevy 1995 |ALL 200
Chevy ALL ALL 290

Table2.3

The solution ideas are to add rew columns for eat combination d aggregated
attributes you are interested in - poa solution, reduncant, waste of storage, and to
introduce the "ALL" value. This value represents the set of all values that exist in a
certain column.

The standard SQL statement to buld this Sal es Summary table from the raw
Sal es datais:

SELECT Model, ALL, ALL, SUM(Sales)
FROM Sales

WHERE Model = 'Chevy'

GROUP BY Model

UNION

SELECT Model, Year, ALL, SUM(Sales)
FROM Sales

WHERE Model ='Chevy'

GROUP BY Model, Year

UNION

SELECT Model, Year, Color, SUM(Sales)
FROM Sales

WHERE Model = 'Chevy'

GROUP BY Model, Year, Color;

Roll-up is asymmetric whil e the third problem is, oppdsitely, related to the symmetric
aggregation result table call ed the crosstabulation, or crosstab for short. Building a
crosstabulation with SQL is even more daunting since the result is not a redly a
relational object — the bottom row and the right column are “unusual”. Crosstab data
isroutinely displayed in the more compad formatas follows:



Chevy Sales CrossTab
Chevy 1994 1995 total

(ALL)
black 50 85 135
White 40 115 155
total 90 200 290
ALL)
Table2.4

Thiscross &b is a two-dimensional aggregation. If other automobil e models are added,
it becomes a 3D aggregation. For example, data for Ford products adds an
additional cross b plane

Ford Sales CrossT ab
Ford 1994 | 1995 total
ALL)
Black 50 85 135
White 10 75 85
total (aLL) | 60 160 220
Table2.5

The qosstab array representation is equivalent to the relational representation wsing
the ALL value. Both generalize to an N-dimensional crosstab. The representation and
the use of unionized GROUP BYs "solves' the representation problem — it represents
agoregate data in a relational data model. The problem remains that expressng
histogram, roll-up, drill-down, and crosstab queries with conventional SQL is
daunting. A 6D crosstab requires a 64-way union of 64 dfferent GROUP BY operators
to buld the underlying representation. Incidentally, on most SQL systems this will
result in 64 scans of the data, 64 sorts or hashes, and a long wait. Building a
crosstabulation with SQL is even more daunting since the result is not a redly a
relational objed — the bottom row and the right column areuhusua”.

2.3 CUBE and ROLLUP operators

The CUBE operator builds a table with all aggregated values. CUBE is a relational
operator. ROLLUP builds aroll-up o atable, i.e.

vl, v2,..., vnf()

vl, v2,...'ALL", f()

vi,'ALL",... 'ALL, f()
'‘ALL', 'ALL",...,"ALL", f()
where f() is an aggregation function.



2.4 The Data Cube Operator
The CUBE operator is the N-dimensional generali zation d simple aggregate functions.
The OD data aibe is a point, the 1D data aube is a line with a point, the 2D data aube
is a qosstabulation, a plane, two lines, and a point and the 3D data aube is a aube
with threeinterseding 2D cross té&s.

Aggregate
=
sum  Group By
(with total)
By Color
RED
WHITE
BLUE
=
Sum Cross Tab

Chevy Ford By Color

RED
WHITE
BLUE

By Make [N T The Data Cube and

Sum - The Sub-Space Aggregates

By Yea
By Make & Year

By Make & Color

By Color
Figure2.2
2.5 Syntax
Basic Cube Syntax
Hereis an basic CUBE syntax example:
SELECT day, nation, MAX(Temp)

FROM Weather
GROUP BY CUBE ( Day(Time) AS day,

Country(Latitude, Longitude) AS nation
);

It first aggregates over al the<sel ect | i st > attributes as in a standal GROUP BY,
t hen adds UNI ONs in ead super-aggregate of the globa cube which is sulstituting
ALL for the aggregation columns. If there are N attributes in the seled list, there will
be 2"-1 super-aggregate val ues.
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For the foll owing statement, a 3D data cube (right) is built from the table at the | eft:

SELECT Model, Year, Color, SUM(sales) AS Sales
FROM Sales
WHERE Modelin {'Ford', 'Chevy'}
AND Year BETWEEN 1990 AND 1992
GROUP BY CUBE(Model, Year, Color);

DATA CUBE
Model Year Color _Sales
Chevy 1990 bl ue 62
Chevy 1990 red 5
Chevy 1990 white 95
Chevy 1990 ALL 154
Chevy 1991 bl ue 49
Chevy 1991 red 54
Chevy 1991 white 95
Chevy 1991 ALL 198
Chevy 1992 bl ue 71
Chevy 1992 red 31
Chevy 1992 white 54
Chevy 1992 ALL 156
Chevy ALL bl ue 182
SALES Chevy ALL red 90
Model Year Color Sales Chevy AL white 236
Chevy 1990 red 1 Chevy ALL ALL 508
Chevy 1990 white 87 CUBE Ford 1990 bl ue 63
Ford 1990 red 64
Chevy 1990 blue 62 For d 1990 white 62
Chevy 1991 red 54 Ford 1990 ALL 189
Chevy 1991 white 95 Ford 1991 bl ue 55
revy 1901 ue 49 g e
or Ite
Chevy 1992 red 31 Ford 1991 ALL 116
Chevy 1992 white 54 Ford 1992  blue 39
Chevy 1992 blue 71 Ford 1992 red 27
Ford 1990 red 64 Ford 1992 white 62
Ford 1990 white 62 ford AL blue  1o9
or ue
Ford 1990 blue 63 Ford ALL red 143
Ford = 1991 red 52 For d ALL  white 133
Ford 1991 white 9 For d ALL ALL 433
Ford 1991 blue 55 ALL 1990 bl ue 125
Ford 1992 red 27 ALL 1990 red 69
Ford 1902 white 62 AL 1330 AL 348
Ford 1992 blue 39 ALL 1991  blue 106
ALL 1991 red 104
ALL 1991 white 110
ALL 1991 ALL 314
ALL 1992 bl ue 110
ALL 1992 red 58
ALL 1992 white 116
ALL 1992 ALL 284
ALL ALL bl ue 339
ALL ALL red 233
ALL ALL  white 369
ALL ALL ALL 941

Figure 2.3



For such a SALES table, it has 2x3x3 = 18 rows while the derived data aibe has
3x4x4,i.e. 48rows. Andthe respedive sets are:

* Model . ALL ALL(Model ) = {Chevy, Ford }
* Year.ALL = ALL(Year) = {1990, 1991, 1992}
e Color.ALL = ALL(Color) = {red, white, blue}

The ALL value gpeas to be esential, but creates substantial complexity. It is a
nonvaue, like NULL. We do nd add it lightly — adding it touches many aspects of
the SQL language. As an aside, to be cnsistent, if the ALL value is a set then the
other values of that domain must be treaed as gngleton setsin order to have uniform
operators on the domain.

Decoration's interact with aggregate values. If the aggregate tuple functionally
defines the decoration column value, then the value gpears in the resulting tuple.
Otherwisethe decorationfieldisNULL.  For example:

SELECT day, nation, MAX(Temp), continent(nation)
FROM Weather

GROUP BY CUBE ( Day(Time) AS day,

Country(Latitude, Longitude) AS nation

);

Andthiswould producethe sampletuples:

Demonstrating decorations and ALL

day nati on [nmax( Tenp) |conti nent

25/ 1/ 1995 | USA 28 North Anerica
AL L USA 37 North Anerica
25/ 1/ 1995 | ALL 41 NUL L

AL L ALL 48 NUL L

Table 2.6

The main concen is that unless nati on is present, the conti nent is not
functionally spedfied and sois NULL.

ROLLUP Syntax

If the goplicaion wants only a roll-up or drill-down report, the full cube is overkill .
It is reasonable to offer the alditional function ROLLUP() in addition to CUBE( ) .
ROLLUP() produces just he super-aggregates:

(f1, f2, ..., ALL),
(f1, ALL, ..., ALL),
(ALL, ALL, ..., ALL).

Cumulative aygregates, like running sum or running average, work especially well
with ROLLUP() since the answer sesnaturally sequential (linear) whil e the CUBE( )
is naturally non-linea (multi-dimensional). Both the ROLLUP() and CUBE()
must be ordered for the cumulative operators to apply. Here is an ROLLUP syntax
example:
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SELECT Manufacturer, Year, Month, Day, Color, Model,
SUM(price) AS Revenue
FROM Sales
GROUP BY Manufacturer,
ROLLUP Year(Time) AS Year,
Month(Time) AS Month,
Day(Time) AS Day,
CUBE Color, Model;

2.6 Minimalist Design

Veteran SQL implementers will be terrified of the ALL value -- like NULL, it will
create many spedal cases. If the goal is to help report writer and GUI visuali zation
software, then it may be simpler to adoptthefollowing approad.

» Usethe NULL valuein placeof the ALL value.

* Do na implementthe ALL() function.

* Implement the GROUPI NG& ) functionto discriminate between NULL and ALL .

In this minimalist design, tods and wers can smulate the ALL value a by for

example:

SELECT Model, Year, Color, SUM sales),
GROUPI N& Mbdel ),

GROUPI N Year),
GROUPI N Col or)

FROM Sal es
GROUP BY CUBE( Mbdel , Year, Color);

The global sum will bethetuple:
(NULL, NULL, NULL, 941, TRUE, TRUE, TRUE)

2.7 Addressing the Data Cube

We can considers extensions to SQL syntax to easily accessthe dements of the data
cube -- making it reaursive andallowing aggregates o reference sub-aggregates.

Our task is to make simple and common things easy. The most common request is for
percent-of-total as an aggregate function.  In SQL this is computed as two SQL
statements.

SELECT Mbdel , Year, Col or, SUM Sal es),
SUM Sal es)/ (SELECT SUM(Sales)
FROM Siles

WHERE Model IN{ ‘Ford ' , ‘Chevy’ }
AND Year Between 1990 AND 1992

)
FROM Sal es

WHERE Model IN { ‘Ford , ‘Chevy’ }
AND Year Between 1990 AND 1992

GROUP BY CUBE (Model, Year, Color);

13



It seems natural to all ow the shorthand syntax to name the global aggregate:

SELECT Model, Year, Color

SUM(Sales) AS total,

SUM(Sales) / total(ALL,ALL,ALL)
FROM Sales
WHERE Model IN { ‘Ford’ , ‘Chevy’ }

AND Year Between 1990 AND 1992

GROUP BY CUBE(Model, Year, Color);

Ancother common desire is to compute the index of a value -- an indication d how far
the value is from the expeded value. In aset of N values, ore expeds ead item to
contribute one Nth to thesum.  So the 1D index of a set of values is
index(vi) = vi / (j vj)
The arrent approac to seleding an field value from a 2D cube with fieldsr ow and
col umm would read as:
SELECT v
FROM cube
VWHERE r ow =i
AND colum = :j
Andthe simpler syntax with datacubeis:
cube.v(:i, :j)
as ashorthandfor the &ove seledion expresson. With this notation added to the SQL
programming language, it shoud be fairly easy to compute super-super-aggregates
from the la®e awbe

2.8 Computing the Data Cube & Maintaining cubes

CUBE generalizes aggregates and GROUP BY, so al the techndogy for computing
those results also applies to computing the cre of the aube.  The main techniques
are for roll-ups ort table on the aggregating attributes to use arays or hashing to
organize the aygregation columns in memory and to use parallelism to compute
aggregates (if posgble) However, computing the 'ALL" tuples and implementing the
'‘ALL'-values isnd trivial.

The available aggegation fundions are:

o distributive - COUNT(), MIN(), MAX (), SUM()

» agebraic - Average, standard deviation

* hdlistic - Median, Rank

Computing a aube with a distributive aygregation function is relatively easy, with an
algebraic function an efficient solutionis still posgble.

If a auberelationis gored i.e. materialized, updites are needed. The discusson d the
aggregation functions was focused on SELECT, na on UPDATE/INSERT/DELETE.
For example, MAX() is distributive for SELECT and INSERT, bu not for DELETE.
The ideais that orthogonal function herarchies are spedfied for SELECT, INSERT
and DELETE

2.9 Data Cube Summary

Data cube is based onthe ideaof usingthe ‘ALL’-value for group-by and aggregation.
CUBT operator isarelational operator to simplify aggregation, generalizes aggregates
group-by, rollups and crosstabs. It is easy to compute for distributive or algebraic
functions.
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Chapter 3. Materialized Views and their Maintenance

3.1 Introduction

A view is a speda display of data. It is a derived relation defined in terms of base
relations. It defines a function from a set of base tables to a derived table and is
typicdly recomputed every time the view is referenced.

A materialized view is aview whose tuples are actually stored in the database. Then
view access can be much faster, especialy if index structures are built. It can aso
benefit integrity constraint chedking and query optimization. People found
materialized views extremely useful in new type of applicaions such as data
warehowsing, replication servers, chronicle or data recording system, data
visuali zation, and mobil e system.

Materialized views ad just like a cabe. And they suffer the same problem as cade:
have to be updated when they get dirty, i.e. whenever the underlying base relations are
modified. This update processis cdled View Maintenance The processis normally
incremental and orly changes to a view are cmpute in resporse to changes to bese
relations. It is becaise recomputing aview from scratch is wasteful in most cases.

3.2 Application of Materialized View

1. Any problem domain that needs Fast Access, Lower CPU and Disk Load
By defining and materializing results of complex query over data in large size, e&c
guery can bereduced to asimplelookup onthe materialized view.

2. Data Warehousing
Materialized views provide aframework for colleding information from several
databases into the warehouse, withou copying each database. And gueries on the
warehouse can beanswered usng the view withou accessng renote DBs.

3. Chronicle Systems
Chronicle is ordered sequence of transadional tuples. It can get very large, even
beyond any DB’s cgpacity. Chronicle systems ded with this kind o strean of
transadional data. Examples are banking, retailing and hlli ng system.

Materialized views provide away to answer queries over the cronicle withou
aacessng it. They can be defined to compute and store summaries of interest over
the chroncle.

4. Data Visualization
Visualization applicaions display views over the data in a database. Users can
change the view definition anytime, and the display has to be updated accordingly.
By materiadizing a view and incrementally recomputing it as its definition changes,
the system keeps such gplication interadive.

5. Mobile System
When a Personal Digital Assstant (PDA) moves and asks a same query regarding

its current locaion and the environment, computing only the change @an reduce
datatransmisson.
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6. Integrity Constraint Checking
Most static integrity constraints can be translate to a view maintenance problem,
sincethey can be represented as a set of views such that norempty meansviolation.

7. Query Optimization
Materialized views are not boundto drect lookup orly. It is possble to used it
internaly or explicitly by user to optimize other queries.

3.3 Materialized View Maintenance
Classification of the View Maintenance problem

1. Information Dimension
The amountof informaion awailable for view mantenanceE.g.
a) Haveaccess b al basereations
b) Haveaccess b some base relations
c) Haveaccess b the materialized view
d) Haveinformation onintegrity constraints and keys

2. Modificaion Dimension:
Modificaiontypes that he agorithm can hade. E.g.
a) Insertionto baserelations
b) Deletion from base relations
c) Update basereations diredly
d) Update baserelations as deletions followed by insertions
€) View definition changes

3. Language Dimension:
The language set used to define the view. E.g.
a) Expressd as a Seled-Projed-Join (SPJ) query
b) Expressed as some other sulset of relationalgebra
c) Expressed SQL or subset of SQL
d) Invaving Duplicaes, Aggregation, a Reaursion

4. Instance Dimension
Whether the algorithm work for all datainstancesandall modificaion instances.
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For simpli city, we may view the problem as in the figure below. It showsétproblem
spacedefined by threeof the four dimensions, namely the information, modification,
and language dimensions.

Expressvenessof View
Definition Language

Amount of Info

Reaursion

Integrity Constraints Outer-Joins
i Chronicle Algebra
Other View Unio
Base Relations Subqueries

Materialized View Arithmetic

Duplicates

) Conjunctive queries
Insertions
Deletions

Type of Modification
Sets of eath

Group Updates
Change view definition

Figure 3.1 The Problem space
Notes: No relative order on each dimension

The Main Idea

Themain ideais o use the lzange to the base relations to compute thel@ange to the
view. So most algorithms treat he view definition as a mathematica formulaand
apply adifferentiation step to oltain an expressgon for the change in theview.

E.g. Baserdation link(S, D): link(a, b) is true if there is a link from nada to b.
View hop(X, Y): hop(c, d) istrueif cis connected to d using 2 links
Definition D: hop(X, Y) = IMxy (link(X, V) ><a=w link(WY) )
Change of link: A(link)
Change of hop A(hop)

By mathematicdly differentiating definition D, we comptte A(hop) as:
A(hop) = Mx,y(( A®INK)(X, V) ><y=w link(\WY) )
O ( link(X, V) b<y=w A(link)(WY) )

O ( AKX V) pay=w  A(INKYWY) )
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Using Full Information

If the view maintenance process have acess to al the base relations and the
materialized view, we refer to this information as full information. The focus shoud
then be on efficient techniques to maintain views expressd in different languages.

1. Algorithms that can maintain dh-reaursive Views
a) The counting algorithm
b) Algebraic Differencing
) The Ceri-Widom Algorithm
d) All agorithms that applied to Recursiveidvs

2. Algorithms that can maintain Outeloin Views
a) A algorithm that first user the change of one relaion left-outer-join the other
relation, and the use the result of the previous join over the first relatin
right-outer-join the change to the cndrelation.

3. Algorithms that can maintain Recursive View
a) The DRed (Deletion and Rederivation) Algorithm
b) The PF (Propagation/Filtration) Algorithm
¢) The Kuchenhdf Algorithm
d) The Urpi-Olive Algorithm

Using Partial Information

View may be maintained using only a subset of the underlying relations. We refer to
this information as partial information. Since aview is nat aways maintainable usig
only partial information, algorithms $houd focus on cheding whether the view can
be maintained, and then on hav to maintain the view.

1. Using No Infuriation (Query Independent of Update)
The only thing we can doif no information a\ailable is to do ndhing. However,
algorithms are nealed to ensure that it isvalid to do nahing acording to the
change.

2. Using the Materiali zed View Only (Self-Maintainable)
Self-Maintainability w.r.t. Insertion and Deletions for SR] views are
a) Usually not self-maintable w.r.t Insertion
b) Often self-maintainable w.r.t deletions and updites

3. Using the Materialized View and Some Base Relations (RarReference)
Different problem and dfferent avail ability result in different dgorithm. Normdly
ancther algorithm is needed evethere is only a slight change in the requirement.
Many algorithms have been propased to solve different problems. Two interesting
subprograms are when:

a) the view and all relations excephé modified relation are available
e.g. Chronicle Views

b) only the view and the modified relation areval able
e.g. Change-reference Maintainable problem
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Chapter 4. Selection of views to materialize in a Data
Warehouse

A datawarehouse is a repository of integrated information avail able for querying and
anaysis. One of the most popuar applicaion d a data warehouse is On-line
Analytical Processng (OLAP). Multidimensional data analysis, as suppated by
OLAP systems, requires the computation d many aggregate functions over large
amourts of data. To meet the performance demands imposed by these applicaions,
virtually al OLAP products resort to some degree of pre-computation d these
aggregates and materiali ze the results as views. The more that is pre-computed, the
faster queries can be answered; however, it is often dfficult to determine which are
the best aggregates to be pre-computed given a fixed amourt of space Storing the set
of pre-computed aggregates are said to be materialized. Thus, the problem here is to
fill available spacewith pre-computed aggregates in order to minimize the average
guery resporse time of the system.

4.1 Background

The set of multidimensional views that summarize measure information in a data
warehouse with respect to any subset of possble dimensionis cdled data aube. In a
data aube, some aggregate views can be computed from ancther aggregate view. For
example, the aggregate on {Productld, Storeld} can be used to answer a query on
either { Productld} or { Storeld}. Thisrelation between aggregate views can be usd to
placethem within a lattice framework as shown in figure 1. Materialized aggregate
views are vertices of the aibe, the following two properties define alattice L of
aggregates.

(8). There eists a partia order < between aggregate views in the lattice. For
aggregate views u and v, v <u if and only if v can be answered using the
results of u by itself.

(b). There is a base view in the lattice, uponwhich every view is dependent. The
baseview is the database

(c). There is a completely aggregated view “ALL” which can be cmputed from

any other view in the lattice PST (100
Timeld}. The numbers are

sizes of the view in number of >

tuples. P (1€

Figure 4.1 The data cube
lattice @rresponding to the PS
schema {Productld, Storeld,

In figure 4.1, three dimensions Productld,
Storeld and Timeld are represented by P,S and
T respedively, and an aggregate view is labeled using he names of the dtributesit is
aggregated on.For example,view PT is aggregated onattributes Productld and Timeld.
If an edge mnrects two views, then the higher view can be used to precompute the
other view in the lattice. For example, there is an edge between ST and T. This means
that ST can be used to compute T. If ST is not materialized, a query on P has to be
answered using the base table, PST.

AL (1)
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4.2 Problem

It isdesirable to precompute andmateriaize all the views in a data warehouse in order
to spead upthe average query resporse time. However, there are two constraints that
make it impossble to store all the nmeterialized views in adata lattice

(a). The first constraint is gace constraint. Typicad data warehouse is huge and
consists of severa tera bytes of data. It is expensive and impossble to store
al the maerialized views.

(b). The second constraint is the update time @nstraint. Even storage st is
cheg enough to had all of the materialized view in a data warehouse, there
would na be enough time to updite them all. As al materialized view
depends on the base table, they need to updite when the data in base table
changed. However, typical businessthat runs data warehouse only has time
to do updite & night when the businessis closed. As a result, the limited
amourt of timefor update is criticd for alarge anountof matrialized views.

Therefore, selecting which views to materialize in a limited amourt of space and
under the update time constraint, in order to maximize the average query resporse
time of the system is difficult.

4.3 Cost Model

The st of answering a query (time of exeaution) is assumed to be equa to the
number of tuples in the aygregate used to answer the query. Hence, the querying
benefit of an aggregate view v is computed by adding up the savings in query cost for
eat view w (including v) over answering it from the base view. That is, instead of
aacessng the base table, we save some st by accessng the small er size materiali zed
view v for every query w that can be answered by v. For example, vis{RS}, then w
isthe set {{ BS}{ P},{ S},{ ALL}} of views. The benefit of querying vinstead of w in
figure 1 is (100-60)*4 = 160. As our goa is to maximize the speed up in query
resporse time under space and update time constraint, we mnsider the kenefit per unit
spaceof aview instead of only the benefit of aview.

4.4 Existing View Selection Solutions
Many studies on view seledion focused on space constraint. Greedy algorithm is
widely applied to solve this problem, like BPUS and PBS are shown in figure 2.

Algorithm BPUS Algorithm PBS
WHILE ( SPACE > 0) DO WHILE ( SPACE > 0) DO
w = aggregate with max. benefit per unit w = small est(A)
spacein A IF (space- jw|>0) THEN
IF (space- jw|>0) THEN space= space-|w|
space= space-|w| S=S0w
S=S0w A=A-w
A=A-w ELSE
ELSE space=0
space=0
@) (b)

Figure4.2Greday algorithms under size constraint.
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In BPUS, it constructs a set of view (S) to materialize under the space constraint
(SPACE), where A isthe whale set of views in a data lattice Starting from an empty
set (initially S is empty), the aggregate view w with the maximum benefit per unit
gpaceis sleded. The dgorithm runs to pick the view with maximum benefit per unit
spacein each round,until the pace onstraint are met. The benefit of thisalgorithmis
at least 63% d theoptimal, which is close to the optimal. The running time is O(kn2),
wherek is the number of selected views and n esttiial number of views in alattice

Because a lattice of d dmensions has 2°d views and 2¥(2"d) view sets. n gows
exporentially with dmensionality, the dgorithm is unaccetably slow for large
numbers of dimensions and typicd data warehouse has dimension greaer than ten.

A large portion d runnng time spend in this algorithm is the time spent to update the
benefit per unit space of every view in each seledion round.The update processitself
takes O(n"2) to upchte the benefit of other views in picking each view to materialize

Another proposed greedy agorithm applied in solving this problem is PBS. The PBS
algorithm, urlike BPUS that considers benefit per unit space Instead, it only
considers the size of the views that are going to pick. PBS picks views in increasing
size urtil the space limit isreachedas shown in figure 2(b). PBS picks the same set of
views as BPUS provided the lattice is sze restricted. In a size restricted lattice, each
view is at least k+1 times larger than its largest child, where k is the number of its
child). This rule makes sure the parent of a view is much larger than the dild.
Otherwise, pick by size may nat give optimal solution as picking a parent will benefit
more than child if they have similar size. The time @mplexity of this agorithm is
O(nlogn) where n is the number of views exist in the lattice The running time is
much faster than BPUS as no updite is neaded in every iteration. Only time spent on
sorting the views in the lattice by size is needed, which iscmcheger than BPUS.

4.5 View Selection Conclusion

In this part of the paper, we have studied two greedy algorithms, BPUS and PBS, in
solving the view selection problem under the size @nstraint. Other algorithm exists
for solving the same problem under updete time onstraint. In general BPUS works
well with al kind d data lattice, no spedal condition reads to hdd for the latticein
this agorithm. However, the running time O(kn"2) is dow due to exhaustive update
of benefit during the picking process Anather agorithm, PBS runs O(nlogn), much
faster than BPUS. However, this agorithm requires the data lattice to be size
restricted, which may not be the general casein pradice
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Chapter 5. View management system for Data
Warehouses

5.1 Introduction

The standard query operation in Data Warehouses is very expensive.  For example, a
manager may has interesting to knonv what is the total sales amourt of every
salesperson, in al different branches of his company, in the last four year. To
answer such query with the stancard query language, it may take housto do scanning
tables and aggregating. In order to spead upthe query processng time, we have to
pre-compute and materiali ze of views with aggregate functions. The problem now is
that how we can nanage those views in order to provide hkest performance beefits.

There ae mainly two kinds of the view selection methods: Static seledion d view
and dynamic selection o view. We will discuss these two dredions of view
seledion in separate section. For the dynamic selection section, we will mainly
discussa dynamic view management system for Data Warehouses cdled DynaMat.

5.2 Static Selection of View

The meaning of static is that the system itself cannat find ou which set of views have
to be materialized. In such case, the date Warehouse alministrator has to control the
amount of redundancy added and specify the space that will be dlocated for the
materialized view. Also, giving some description onthe query pattern is necessary.
Base on the given information, some dgorithms can be used to generate a suggestion
set of views thatcan be materialized and hence, provide better performance of OLAP.

This datic sdledion d views however, has svera disadvantages. Firstly, it
contradicts to the dynamic properties of decision suppat analysis system. In a
dedsion suppat system, the query pattern is difficult to predict because different
users may be interested in the different trendsin dfferent period. Moreover, as data
in data Warehouse is changed periodicdly, say, the headquarter of a wmpany may
colled the sales date from all branch at night, a static seledion o view might be
quickly become outdated. This means that the aministrator shoud continualy
monitor the query pattern and periodically re-run the dgorithms to updie the
materialized views. If the data Warehouses system is large and complicated, this
work is very time conuming.

Another drawback of the static view seledionis that the system canna use the results
of queriesthat canna be aaswered by the materialized view. Sincethere ae alot of
inter-dependency among a set of OLAP queries, some queries are likely to be
computable with the results of previous queries operations. For example, someone
want to find “total sales of every seasonin last yea”, ancther one want to find “total
salesin last year”. The result of seaond query can be cdculated from the result of
thefirst query. This meansthat we do nothaweto accessthe kase ble atall, but the
static seledion d view does nat have such function.  Furthermore, static seledion o
view only considers how to seled a view to materialize, it does not consider how to
refresh those views. This is also very important because the base data in data
Warehouse is aways changing.
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5.3 Dynamic View Management System : DynaMat

Features of DynaMat

DynaMat can dynamically materialize the data & multiple levels of granularity in
order to match the demand. It also takes the two maintenance anstrains, which are
time to upchte the view and space to store the view, into consideration. DynaMat
unifies the view seledion and view maintenance problems under a single framework
using “goodress’ measure to compute the view maintenance plan.

System overview

There are manly four parts in DynaMat.
View Pod is the information repository to
store the materiali zed results. H
Fragment L ocator isto determine whether g

or not the already materialized results can
be used to efficiently answer the query.

Data
Warehouse

Directory Index is maintained to suppats Query Interface [<

sub-linea seach in view pod for finding
suitable candidate materialized results. [f] Admission ! M Directory |
Control Entity Fragmenm—r ||rnedce()J(ry
Y

the seach canna find a candidate t
answer the query, the conventional query 3
operationwill be used.

Admisgon Control Entity is used to test View Pool
the result of query whether or not it is
beneficial to be stored in thepool.

Figure5.1

The system operations can be caegorized in two operational phases: online phase and
update phase. During online phase, the goal of the system is to answer as many
gueries as possble from the View Podl, because this will be much faster than through
the @nventiona method. At the same time, the new query patterns will be
monitored and be adated by the system.

During the updete phase, the new data from distributed date sources will be received
and stored in the data warehouse.  Since the base date is changed, the materiali zed
results in the pool will also be refrestie

! The system will ad as in two bound cases, en
e ,f’\\ ______________ Is time bound case and the other is ace
/A boundcase. During the online phase of date
oo warehouwse, the query results are ntinually
" added to the pod. So the size of the pod
P el 5 will grow monaonicdly overtime if the size
" vz does nat reach the space limit. During the
update phase, owning to the time cnstrain W,
Figure5.2 The time bound case some mate“allze_d resu_lts may not be
upcete-able and will be evicted from the pod.
Thisisthetime boundcase. In the graph, the locd minimums represent the anourt
of materialized date that can be update within W and the locd maximums refer the

pod sizejust before the update event happend.

pool size
>
-
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The space bound case happened when the pod becme full. In such case, some
replacement palicy such as LRU, FIFO will be used. If the update window W is
large enough that all the materialized results A
can be update-able, then the content of the
pod isdetermined by the replacerrent pdicy.

View Pool organization R

The results in the view pod can be stored as - - -
the traditional relational tables. However, ' ime 2

that implementation canna guarantee

ressonable query performance Moreover,  Figure5.3 The space bound case
scanning alarge table can be time @wnsuming.

A better data structure to store the materialized result is Cubetrees. Cubetrees are
multidimensional data structures that proved bah storage and indexing in a single
organization. With such structure, better query performance and space utili zation
can be achieved.

A multidimensional data ware house is a data repository in which data is organized
alongaset of dimensions D=(d1,42,...dn}. Asume the data warehouse workload is a
colledion d Multidimensiona Range queries (MR-queries) and each of them can be
visuali zed as hyper-plane in the data cube spaceusing an-dimensional vedor 4.

q={i’<.1;i’<.2;- ... Rn}

Where Riisarangein the dimension's 4i domain and Ri can ore of the foll owing:
1. afull range: Ri={min(di),max(4)}. This means range between the minimum
and the maximum values of key 4i.
2. asinglevaluefor for i
3. an empty range which represent adimension that is not present in the query

For instance, Let D={product, store} where 1=<product<=1000and 1=<store<=200. The
hyper-plane ¢={50,(1,200)} corresponds o the SQL querysi:

Select product, store, aggregate list
FromF

Where product=50

Group by product, store

The same natation will also be used to represent the materialized results of MR
gueries which is cdl ed Multidimensional Range Fragments (MRFs). DynaMat maps
eat SQL query to one or more MR queries. Givena MR query, we want to find the
best set of MRFsin the view pod to answer the query. In the system, MRFs provide

adlightly coarser grain of materialization because we hope that single stored fragment
can be used to answer a new query, and we do not want to try the @mbination of alot
of small fragments to find the result. Having small fragment will be result in poor
performance during query exeaution and upaites. Hence, larger fragments of views
are preferable.
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Definition d  fcovers g: Given aMRF fand aquery ¢, fanswers g iff
+ for every non-empty ranges Ri of ¢, the fragment stores exadly the same range
» for every empty range Ri, the fragment’s correspondng range is either empty
or spans the whok domain of dimension

When a query is submitted, instead of search
al the fragments, DynaMat uses Directory
Index to further prune the search space. The
result is a &t of indices conrecied through the
lattice. Ead node fas adedicated index that
is used to keep track of all fragments of the
correspondng view that are stored in the pod
In order to find the result of a query g, we The Data Cube lattice for dimensions a, b and ¢
scan al views in the lattice by using ¢ If it
contains materiali zed results f whose hyper-planes cover g, then result can be found
For example:

» p={product, store, customer}

. #{(1,1000,(),Smith}

g customer

query

We first scan the index for view(product,customer)
using the redangle{(1,1000,(Smith,Smith)}.
The graph right side gives a snapshot of the
correspondng  R-tree  implementation  for

view(producti,customer). The shaded aress are ‘ product b

the MRFs of the materialized views in the pool.  Figure5.5

Since no fragment is found, msed on the Directory for view (product, customer)
dependencies defined in the lattice, we dso check view(product,store,customer) for
candidate fragments. So we then
using((1,10®),(min(store),max(store)),(Smith,Smith)}, if a fragment is found, we
coll apse the store column andaggrecatethe measure to compue the final result.

Pool Maintenance

A goodness measure was derived for choasing which o the fragments will be stored
and which will be discarded. Each time the DynaMat reaches the space or time
bound, it uses the goodressmeasure for repladng MRFs.  The foll owing shows the
four criteriato define such agoodress

» thetimethat the fragment was last aceessed by system
goodness(f) = Tlast_access(f)
Thiswill resultsin a Least Recently Used(LRU) type of replacement policy

» thefrequency of accessfor the fragment

goodness(f) = freq(f)
Thiswill resultsin a Least Frequently Used(LFU) type of replacement policy

» thesize of the fragment

goodness(f) = size(f)
Thiswill resultsin a Smaller-Fragment-First(S-F) type of replacement policy
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* theexpeckd pemlty rate of re-computing the fragment if it is evicted
goodness(f) = freq(f) * c(f) / size(f)
where c(f) is the @st of re-computing f
Thiswill resultsin a Smaller Penalty First(SPF) type of replacement policy

5.4 View Management Conclusion

In this part of context, we have discussed the two view seledion strategies: static and
dynamic view seledion. For the static strategy, we have shown the drawback.
For the dynamic view seledion, we discus=d it with a dynamic view management
system cdled Dynamic. In the following part, we will see more view seledion
algorithms.
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