
0018-9162/01/$17.00 © 2001 IEEE66 Computer

Designing Data
Warehouses with OO
Conceptual Models

M
ost developers agree that data warehouse,
multidimensional database (MDB), and
online analytical processing (OLAP)
applications emphasize multidimen-
sional modeling, which offers two ben-

efits. First, the multidimensional model closely
parallels how data analyzers think and, therefore,
helps users understand data. Second, this approach
helps predict what final users want to do, thereby
facilitating performance improvements.

Developers have proposed various approaches for
the conceptual design of multidimensional systems.
These proposals try to represent the main multidi-
mensional properties at the conceptual level with spe-
cial emphasis on data structures.

A conceptual modeling approach for data ware-
houses, however, should also address other relevant
aspects such as initial user requirements, system behav-
ior, available data sources, and specific issues related
to automatic generation of the database schemes. We
believe that object orientation with the Unified
Modeling Language can provide an adequate notation
for modeling every aspect of a data warehouse system
from user requirements to implementation.

We propose an OO approach to accomplish the con-
ceptual modeling of data warehouses, MDB, and
OLAP applications. This approach introduces a set of
minimal constraints and extensions to UML1 for rep-
resenting multidimensional modeling properties for
these applications. We base these extensions on the
standard mechanisms that UML provides for adapt-
ing itself to a specific method or model, such as con-
straints and tagged values. Our work builds on

previous research,2-4 which provided a foundation for
the results we report here and for earlier versions of
our work. We believe that our innovative approach
provides a theoretical foundation for the use of OO
databases and object-relational databases in data
warehouses, MDB, and OLAP applications.

We use UML to design data warehouses because it
considers an information system’s structural and
dynamic properties at the conceptual level more natu-
rally than do classic approaches such as the Entity-
Relationship model. Further, UML provides powerful
mechanisms—such as the Object Constraint Language1

and the Object Query Language1—for embedding data
warehouse constraints and initial user requirements in
the conceptual model. This approach to modeling a
data warehouse system yields simple yet powerful
extended UML class diagrams that represent main data
warehouse properties at the conceptual level.

MULTIDIMENSIONAL MODELING PROPERTIES
Multidimensional modeling structures information

into facts and dimensions. We define a fact as an item
of interest for an enterprise, and describe it through a set
of attributes called measures or fact attributes—atomic
or derived—which are contained in cells or points
within the data cube. We base this set of measures on a
set of dimensions that derive from the granularity cho-
sen for representing the facts. These dimensions thus
present the context for analyzing the facts. Further,
attributes—usually called dimension attributes—pro-
vide the specifics that characterize dimensions.

For example, consider the product sales category
for a large chain of stores, which has the following

Based on a subset of the Unified Modeling Language, the authors’ object-
oriented approach to building data warehouses frees conceptual design
from implementation issues.

Juan Trujillo
Manuel
Palomar
Jaime Gomez
Universidad
de Alicante

Il-Yeol Song
Drexel University

C O V E R F E A T U R E

dimensions: product, store, customer, and time. Figure
1 shows both a data cube and classification hierar-
chies. In Figure 1a, we see a data cube typically used
for multidimensional modeling. In this particular case,
we have defined a cube for analyzing measures along
the product, store, and time dimensions, as shown in
Figure 1b’s classification hierarchies.

We usually consider facts as many-to-many rela-
tionships between all dimensions and as many-to-one
relationships between the fact and every particular
dimension. In our example, product sales is related to
only one product that is sold in one store to one cus-
tomer at one time.

In some cases, facts can represent many-to-many
relationships between particular dimensions. Suppose
that we want to associate product sales with the pur-
chase tickets each chain store generates. The sales and
tickets form a many-to-many relationship to the prod-
uct dimension because one ticket can consist of more
than one product, although every ticket is still pur-
chased in only one store by one customer at one time.

The concept of applying additivity or summariza-
bility4-7 to measures along dimensions is crucial to
multidimensional data modeling. A measure is addi-
tive along a dimension if we can use the SUM opera-
tor to aggregate attribute values along all hierarchies
defined on that dimension. The aggregation of some
fact attributes—called roll-up in OLAP terminology—
might not, however, be semantically meaningful for
all measures along all dimensions.

In our example, number of clients—estimated by
counting the number of purchase receipts for a given
product, customer, day, and store—is not additive
along the product dimension. Because the same ticket
can include other products, adding up the number of
clients for two or more products would lead to incon-
sistent results. However, other aggregation opera-
tors—such as SUM, AVG, and MIN—could be ap-
plied to other dimensions, such as time.

Defining the classification hierarchies of certain
dimension attributes is crucial because these classifica-
tion hierarchies provide the basis for the subsequent
data analysis. Because a dimension attribute can also be
aggregated to more than one other attribute, multiple
classification hierarchies and alternative path hierar-
chies are also relevant. For this reason, directed acyclic
graphs provide a common way of representing and ana-
lyzing dimensions with their classification hierarchies.

Figure 1b shows the different classification hierar-
chies defined for the product, store, and time dimen-
sions. On the product dimension, we have defined a
multiple classification hierarchy so that we can aggre-
gate data values along two different hierarchy paths:

• product–type–family–group and
• product–brand.

Other attributes, not used for aggregating purposes,
can provide features for other dimension attributes,
such as product name. For the store dimension, we
have defined an alternative path classification hierar-
chy with two different paths that converge into the
same hierarchy level:

• store–city–province–state and
• store–sales_area–state.

Finally, we have also defined another alternative path
classification hierarchy with the following paths for
the time dimension:

• time–month–semester–year and
• time–season.

In most cases, however, classification hierarchies are
not so simple. The concepts of strictness and com-
pleteness are important for both conceptual purposes
and for further multidimensional modeling design

December 2001 67

January March

Store

Product

Time

Milk

Water

Store01

Store10

9

4

Cells

Measures

Dimensions

Product

Type Brand Season

Family

Group

Store

City

Province

Sales_area

State

Time

Month

Semester

Year

Figure 1. A multi-
dimensional model
data cube: (a) The
cube itself is com-
posed of cells that
define fact attributes,
while (b) the classifi-
cation hierarchies
display the dimen-
sions that define the
cube—product, store,
and time.

(a) (b)

68 Computer

steps.7 We use strictness here to mean that an object at
a hierarchy’s lower level belongs to only one higher-
level object. Thus, for example, a province can only
relate to one state. By completeness we mean that all
members belong to one higher-class object and that
object consists of those members only. Thus, only the
recorded provinces can form a state. In a “complete”
classification hierarchy between the state and province
levels, all the recorded provinces form the state, and all
the provinces that form the state have been recorded.

OLAP scenarios sometimes become extensive as the
number of dimensions increases significantly, a trend
that can lead to extremely sparse dimensions and data
cubes. In such a scenario, some attributes are normally
valid for all elements within a dimension while others
are only valid for a subset of elements, known as the
categorization of dimensions.7,8 For example, the
attributes alcohol percentage and volume would only
be valid for drink products and would be null for food
products. A proper multidimensional data model
should consider attributes only when necessary,
depending on the categorization of dimensions.

Once developers define the multidimensional model
structure, users can define a set of initial requirements
as a starting point for the subsequent data-analysis
phase. From these initial requirements, users can apply
a set of OLAP operations6,9 to the multidimensional
view of data for further data analysis. These OLAP
operations usually include the following:

• roll-up, which increases the level of aggregation
along one or more classification hierarchies;

• drill-down, which decreases the level of aggrega-
tion along one or more classification hierarchies;

• slice-dice, which selects and projects the data; and
• pivoting, which reorients the multidimensional

data view to allow exchanging dimensions for
facts symmetrically.

RELATED WORK
The well-known star schema by Ralph Kimball is

characterized as a logical multidimensional data
model.6 Other data models provide a formalism for
assessing multidimensional properties. However, we
will only mention the most relevant conceptual mul-
tidimensional models. These models provide a high
level of abstraction for assessing multidimensional
properties. These models include the Dimensional-
Fact (DF) model by Matteo Golfarelli and colleagues,5

the Multidimensional/Entity-Relationship (M/ER)
model by Carsten Sapia and colleagues,10,11 and the
StarEr model by Nectaria Tryfona and colleagues.7

Table 1 shows the multidimensional properties of
these three types of conceptual models. Only the
StarEr model considers the many-to-many relation-
ships between facts and particular dimensions by indi-
cating the exact cardinality between them. None of
the models includes derived measures or their deriva-
tion rules as part of their conceptual schema.

The DF and StarEr models explicitly represent the
set of aggregation operators that can be applied to
nonadditive measures. With reference to dimensions,
all three models use directed acyclic graphs (DAGs)
to define certain dimension attributes for multiple and
alternative path classification hierarchies. However,
only the StarEr model specifies the exact cardinality
levels for nonstrict and complete classification hierar-
chies. As both the M/ER and the StarEr models derive
from the Entity-Relationship model, they use is-a rela-
tionships to categorize dimensions.

Only the StarEr model lacks an explicit mechanism
for representing initial user requirements for dynamic

Table 1. Comparison of conceptual multidimensional models.

Model

Multidimensional modeling properties DF M/ER StarEr

Structural level
Facts

Many-to-many relationships with particular dimensions No No Yes
Atomic measures Yes Yes Yes
Derived measures No No No
Additivity Yes No Yes

Dimensions
Multiple and alternative path classification hierarchies Yes Yes Yes
Nonstrict classification hierarchies No No Yes
Complete classification hierarchies No No Yes
Categorization of dimensions No Yes Yes

Dynamic level
Specifying initial user requirements Yes Yes No
OLAP operations No Yes No
Modeling system behavior No Yes No
Graphical notation Yes Yes Yes
Automatic generation into a target OLAP commercial tool No Yes No

multidimensional modeling. Only the M/ER model
uses state diagrams to model the system’s behavior
and provide a set of basic OLAP operations to be
applied from these initial user requirements.

All the models provide a graphical notation that
helps designers perform conceptual modeling. Only the
M/ER model, however, provides a framework for auto-
matically generating the database schema into a target
OLAP commercial tool, either Informix MetaCube or
Cognos PowerPlay.

None of the conceptual modeling approaches con-
siders all multidimensional properties at both the
structural and dynamic levels. However, an OO
approach can elegantly represent multidimensional
properties at both levels.

OO CONCEPTUAL MODELING APPROACH
Our approach uses a UML class diagram to specify

the structure of a multidimensional model.

Structural level
This OO approach is not restricted to using flat UML

class diagrams to model large, complex data warehouse
systems. UML’s package grouping mechanism groups
classes into higher-level units, creating different levels of
abstraction and simplifying the final model. In this way,
a UML class diagram improves and simplifies the sys-
tem specifications created with classic semantic data
models such as the Entity-Relationship model. Further,
OCL expressions can embed operations and constraints
in the class diagram. Our approach clearly separates
the structure of a multidimensional model specified
with a UML class diagram into facts and dimensions.

Facts and dimensions
Fact classes represent facts and the measures we are

interested in, defined as attributes within these classes.
Dimension classes represent dimensions.

We then consider fact classes as composite classes
in a shared-aggregation relationship of n dimension
classes. We define the minimum cardinality of dimen-
sion-class roles as 1 to indicate that a fact object
instance is always related to object instances from all
dimensions. We define the fact class role’s cardinality
as * to indicate that a dimension object can be part of
one, zero, or more fact object instances.

Figure 2 shows the Product_sales fact class—which
consists of tickets—and the dimension classes
Product, Store, Customer, and Time. The fact class is
thus specified as a shared-aggregation relationship
between all dimension classes.

Derived measures
We can also explicitly consider derived measures by

placing the constraint /next to a measure in the fact class.
Derivation rules appear between braces. In Figure 2,
three derived measures—number_of_clients, qty_sold
and total_price—have been defined and their derivation
rules placed between braces atop the fact class.

Many-to-many relationships
Thanks to the flexibility of shared-aggregation rela-

tionships that UML provides, we can consider many-
to-many relationships between facts and particular
dimensions. We do so by indicating the 1..* cardinal-
ity on the dimension class role to show that a fact
object instance can be related to one or more dimen-

December 2001 69

Product_sales

Many-to-many relationship between
the fact and the product dimension

{OID} num_ticket
{OID} num_line
/ number_of_clients
product_price
qty
inventory
/ qty_sold
/ total_price

New
Destroy

Product

{OID} Cod_product
{D} name
weight
cost_trans

New
Destroy

Fact class as a shared-aggregation relationship of n dimension classes

{dag}

Store

{OID} cod_store
{D} name
address
telephone

New
Destroy

{dag}

Customer

{OID} cod_customer
{D} name
address
telephone

New
Destroy

{dag}

Time

{OID} cod_time
{D} day
working
num_dia

New
Destroy

{dag}

{num_clients is not aggregated along
product dimension }

{inventory is {AVG, MIN, MAX} along
time dimension }

{qty_sold = sum (qty) }
{total price = product_price * qty}
{number_of_ clients = count (*) }

Derived measures

Derivation rules

Nonadditive attributes

1..* 1 1 1

Dimensions

Fact

*

Figure 2. A fact class as a shared-aggregation relationship of n dimension classes. The Product_sales class—which has derivation rules, derived mea-
sures, and nonadditive attributes—has a shared-aggregation relationship with the product, store, customer, and time dimensions.

70 Computer

sion object instances. In Figure 2, the 1..* cardinality
on the Product dimension class role in the shared-
aggregation relationship indicates an instance of a
Product_sales fact object—one ticket—that can relate
to more than one product.

Our approach also lets us define identifying attrib-
utes that can be defined in the fact class, if convenient,
by placing the constraint {OID} next to a measure
name, also known as degenerate dimensions12—
dimensions whose identifiers exist in a fact table only,
and not as actual dimensions. This approach provides
other fact features in addition to the measures for
analysis. In our example, we could store the ticket and
line numbers as other ticket features.

These {OID} attributes can also be used for auto-
matic generation of the database schema into a target
relational commercial OLAP tool, mainly if a many-
to-many relationship exists between the fact class and
a particular dimension class. In this case, the designer
may want to use these {OID} attributes to identify fact
instances in a relational database instead of creating
bridge tables.

The identifying attributes num_ticket and num_line
correspond to the ticket and line numbers of a physi-

cal ticket. In an automatic generation process, these
attributes could be used to unambiguously distinguish
the ticket line that a sold product belongs to.

Additivity
By default, we consider all measures additive: The

SUM operator can be applied to aggregate measure
values along all dimensions. Nonadditivity defines
constraints on measures between braces and places
them somewhere around the fact class. They have for-
mal underlying formulas2 and contain the allowed
operators, if any, along the dimension for which the
measure is not additive. For clarity, the UML notation
represents these constraints in a property tag.

For simplicity and clarity, the class diagram con-
tains the additivity rules and derivation rules for
derived attributes. OCL expressions can embed both
kinds of rules in a large data warehouse system,
thereby avoiding cluttered class diagrams.

Classification hierarchies
For dimensions, a base class represents every clas-

sification hierarchy level. An association of classes
specifies the relationships between two levels of a clas-
sification hierarchy. The only required constraint is
that the classes used for defining a classification hier-
archy along a dimension must define a DAG rooted
in the dimension class. The DAG structure can repre-
sent both alternative path and multiple classification
hierarchies. Thus, a class B of a hierarchy is consid-
ered an association of a class A. Placing the constraint
{dag} next to every dimension class in the UML class
diagram specifies that any class within a classification
hierarchy must define a DAG.

Figure 3 shows a classification hierarchy specified
along the store and customer dimensions that omits
class methods for clarity. The constraint {dag} has been
placed next to the Store and Customer dimension
classes. For simplicity, the store and customer dimen-
sions share a classification hierarchy path.

The base classes, including the dimension class, that
belong to the classification hierarchy must contain an
explicitly defined identifying attribute. We do this by
placing the constraint {OID} next to one attribute in
every class. This attribute is necessary to automati-
cally generate the database schema from the UML
class diagram into a target relational OLAP tool
because these tools store the attribute in their meta-
data to unambiguously identify every instance of a
classification hierarchy level.

Relational commercial OLAP tools, however, use a
default attribute within every classification hierarchy
level that will be used in the subsequent data analysis
phase. A default is a dimensional attribute that users
want to analyze with a target commercial OLAP tool.
This default attribute displays every time the user

Sales_area

{OID} cod_sale_area
{D} name
population

City

{OID} cod_city
{D} name
population

Customer

{OID} cod_customer
{D} name
address
telephone

{dag}

Shared hierarchy
1..*

1

* *

Province

{OID} cod_prov
{D} name
population

Strict hierarchy
1..*

1

*

State

{OID} cod_state
{D} name
population

1..*

1..*

1..*

1

Store

{OID} cod_store
{D} name
address
telephone

{dag}

(completeness)

1

Alternative path hierarchies

Nonstrict hierarchy

Figure 3. Multiple classification hierarchy that includes shared, strict, complete,
alternative-path, and nonstrict hierarchies, with class methods omitted for clarity.

applies an OLAP operation, rather than having the
tool prompt the user to specify which attribute to dis-
play before executing each operation.

For example, a commercial relational OLAP tool
can define the name attribute of the city hierarchy level
as the default attribute in the store dimension.
Applying a roll-up operation to aggregate measure
values from the store hierarchy level into the city level
would analyze the city names where the products were
sold because city hierarchy level defines the city name
attribute as the default.

Therefore, to plan for subsequent automatic gen-
eration into a target relational OLAP tool, we must
qualify the default attribute for every hierarchy level
in our UML class diagram. We call a default attribute
a descriptor because we consider the term “default”
too general. Thus, we define a descriptor in every class
that represents a classification hierarchy level, thereby
indicating that the commercial OLAP tool will use
this as the default attribute. We do this by defining
the constraint {D} next to an attribute. Finally, we
can define the default and identifying attributes simul-
taneously. In Figure 3, both the identifying {OID} and
descriptor {D} attributes have been defined for every
class.

Strictness and completeness
The multiplicity 1 and 1..* defined in the target

associated class role address the concepts of strictness
and nonstrictness. Defining the {completeness} con-
straint in the target associated class role addresses the
completeness of a classification hierarchy. By default,
our approach considers all classification hierarchies
noncomplete.

In Figure 3, adding the constraint {completeness} to
the state associated class role in the association to the
province class indicates that a state object instance
consists of only those province object instances and
no others. Further, the store and sales_area classes
form a nonstrict association because a sales_area
object instance can refer to more than one state object
instance. Moreover, if the multiplicity from sales_area
to state were * instead of 1..*, sales_areas could be
related to no states, forming a noncovering relation-
ship.13

Categorizing dimensions
In some cases, however, a multidimensional con-

ceptual model should consider the categorization of
dimensions to model additional features for an entity’s
subtypes. Our approach uses a generalization-spe-
cialization relationship to categorize entities that con-
tain subtypes. This approach imposes the important
constraint that no class other than the dimension class
can belong to both a classification and specialization
hierarchy at the same time.

In Figure 4, the Product dimension class has been
modeled depending on the different subtypes—
Group, Family, and Type—considered in the system.

Dynamic level
We use cube classes to represent initial user

requirements as the starting point for the subsequent
data-analysis phase. A UML-compliant class notation
properly and easily defines these classes. The basic
components of the cube classes include the

• head area, which contains the cube class’s name;
• measures area, which contains the measures to

be analyzed;
• slice area, which contains the constraints to be

satisfied;
• dice area, which contains the dimensions and

their grouping conditions to address the analy-
sis; and

• cube operations, which cover the OLAP opera-
tions for a further data-analysis phase.

Consider the following initial user requirement for
the multidimensional model, as specified by a UML
class diagram: We want to analyze the quantity of
products sold where the group of products is “Gro-

December 2001 71

Generalization

Cleaning

format
…

Product

{OID} Cod_product
{D} name
weight
cost_trans

{dag}

Grocery

out_of_date
country
…

Group

Generalization

Food

preparation
…

Drink

volume
…

Family

Generalization

Alcohol

percentage
…

Refreshment

sparkling
…

Type

Figure 4. The Product dimension class, modeled by defining its different subtypes—
Group, Family, and Type.

72 Computer

cery” and the store_state is “Valencia,” grouped
according to the product family and type and the store
province and city. Figure 5 shows both the graphical
notation of the cube class that corresponds to this
requirement and its accompanying Object Query
Language (OQL) specification. Figure 5a shows that
the measure area specifies the measure to be analyzed,
qty_sold. Constraints defined on dimension classifica-
tion hierarchy levels—group and state—appear in the
slice area, and the classification hierarchy levels for
which we want to analyze measures—family, type,
province and city—appear in the dice area. Finally, the
cube operations section specifies the available OLAP
operations.

For nonexpert UML or database users, the cube
class’s graphical notation facilitates the definition of
initial user requirements. Every cube class has a more
formal underlying OQL specification. Experts can use
OQL to define cube classes by specifying the appro-
priate OQL sentences. Figure 5b shows how an OQL
syntax could specify the cube class example in Figure
5a.

Behavioral properties
OO analysis and design techniques can elegantly

link a system’s structural and behavioral properties at
the conceptual level. In our OO approach, behavioral
properties mainly relate to cube classes that represent
initial user requirements. Users can apply certain
OLAP operations in the further-data-analysis phase
to start a navigational process. These operations are
close as they generate another cube class as an output.

UML’s state and interaction diagrams can model
the behavioral evolution of these cube classes based
on the applied OLAP operation.2,3 These diagrams
contain information about the most probable evolu-
tion of the final user requirements from the specified
user requirement. OLAP designers can use the infor-
mation these diagrams contain to predict user behav-
ior, helping them design a proper view-maintenance
policy.

To specify that certain OLAP operations lead users
to cube classes that analyze the same data in different
ways, we define one state diagram for each initial cube
class. In these diagrams, we consider as a valid state

every classification hierarchy level defined on a dimen-
sion included in the dice area. Each of these valid states
will form a new cube class. For example, consider the
cube class definition in Figure 5a. Users can apply roll-
up and drill-down operations on the classification hier-
archy levels defined on the store and product
dimensions to identify a valid state of that cube class.
Therefore, an OLAP designer can observe the most vis-
ited state and provide the corresponding views that
answer it.

We can also define an interaction diagram for each
UML class diagram. In our approach, we have
adopted sequence diagrams1 for their clarity and sim-
plicity. The interaction diagram shows interactions
among cube classes changed by OLAP operations such
as rotate, pivot, slice, or dice. Certain OLAP opera-
tions can lead users to cube classes that will show com-
pletely different data. These cube classes represent the
most probable new requirements a final user may
want to execute. Thus, just as with the state diagram,
an OLAP designer can define a corresponding view
for each of these new cube classes in the interaction
diagram.

CASE TOOL
The computer-assisted software engineering (CASE)

environment’s most significant contribution to our work
is its ability to implement both the structural and
dynamic levels of the conceptual model into a target
commercial OLAP tool. Different implementation issues
imposed by different commercial OLAP tools—as well
as the particular issues to be tackled in data warehouse
conceptual modeling—have prompted us to design our
own CASE tool instead of extending another one.

We designed the GOLD Model CASE Tool to pro-
vide an operational environment that supports our
conceptual modeling approach. The tool provides a
comfortable interface for elaborating data warehouse
conceptual designs independently of implementation
issues. Figure 6 consists of two screens from the tool:

• Figure 6a shows a design screen from the CASE
tool that displays the structural aspects of a mul-
tidimensional model. Class attributes and meth-
ods have been hidden for the sake of simplicity.

• Figure 6b shows the window that lets the tool’s
operator see initial user requirements and their
corresponding state diagrams.

In the second screen, 6b, the structural aspects of the
underlying multidimensional model appear as a tree
structure on the window’s left side.

AUTOMATIC GENERATION INTO AN OLAP TOOL
OLAP tools implement a multidimensional model

from two different levels:

Select sales: s.qty_sold,
city, province
…
From sales s,
 s.product pr, s.store str,
 str.city c, c.province prov, prov.state sta
…
Where sta.name=“Valencia”
…
Group by city: c.name, province: prov.name
…
Order by city, province
…

Cube class name
Measures

Slice

Dice

OLAP operations

qty_sold

Store.State=“Valencia”
Product.Group=“Grocery”

Store.Province
Store.City
Product.Family
Product.Type

Figure 5. (a) Cube
class example with
parameters specified
in the measures,
slice, dice, and oper-
ations areas; and
(b) the class’s corre-
sponding Object-
Query Language
specification.

(a) (b)

December 2001 73

Figure 6. The GOLD Model CASE Tool. The operational environment supports a conceptual modeling approach: (a) A design screen displays the structural
aspects of a multidimensional model; (b) the tool’s operator can view initial user requirements and the corresponding state diagrams.

(b)

(a)

74 Computer

• Structural—the structures that form the database
schema for housing multidimensional data and the
underlying multidimensional model—also known
as the metadata—that provides the model’s key
semantics, such as facts, measures, and dimen-
sions.

• Dynamic—refers to the definition of final user
requirements and OLAP operations for further
analyzing data.

Each commercial OLAP tool provides its own model
for assessing multidimensional modeling’s main seman-
tics and concepts. Consequently, different OLAP tools
focus on different semantics and properties. Ideally, a
proper multidimensional design uses a conceptual
approach totally independent of implementation con-
cerns, and developers generate the model’s implemen-
tation directly into a commercial OLAP tool.14 We
chose the Informix MetaCube’s (http://www.informix.
com) relational OLAP tool as being representative of
our process, but it can be applied to any commercial
OLAP tool. The multidimensional model provided by
the Informix MetaCube to consider multidimensional
properties—a Decision Support System (DSS)—is
implemented in relational tables.

At the structural level, our process first generates
the star schema that will house the multidimensional
data, then it generates the corresponding multidi-
mensional information in DSS format from the mod-
eling constructors used in the conceptual design.
However, some constructors lack a corresponding
Informix MetaCube representation, thus we ignore
some and transform others while trying to preserve
their initial semantics. Specifically, we ignore or trans-
form the following semantic properties:

• Nonstrict and complete classification hierarchies
convert to strict classification hierarchies, the only
type Informix MetaCube considers.

• We ignore the defined additivity rules because
Informix MetaCube does not store any informa-
tion related to the additivity of measures.

• Specialization hierarchies transform into strict
classification hierarchies.

• To transform many-to-many relationships
between the fact class and any particular dimen-
sion class, we convert every {OID} attribute
defined in the fact class into a new dimension
with only one hierarchy level and one attribute,
the proper {OID} attribute. In our example,
num_ticket will be transformed into a new
dimension.

At the dynamic level, every cube class our concep-
tual design specifies—initial user requirements, state,
and interaction diagrams—translates into Informix
MetaCube requirements. Thanks to this conversion,
the final user can use the relational OLAP tool to load
the initial user requirements specification in the sub-
sequent data-analysis phase. Figure 7 shows an exam-
ple of the SQL sentences contained in the scripts our
CASE tool generates.

In Figure 7’s left column, the SQL sentences that
define the relational table correspond to the store
dimension. All attributes defined in the different clas-
sification hierarchy classes are defined as attributes
within the same table. Figure 7’s right column shows
an example of the SQL sentences that define multidi-
mensional issues in the DSS model. The CASE tool
registers the store dimension in the dim table, then
defines the store base hierarchy level in the dim_el
table and, finally, registers attributes within this hier-
archy level in the att table.

C urrently, we’re working on the automatic
implementation of a multidimensional model
derived from our approach to using object-ori-

ented and object-relational databases for data ware-

Figure 7. SQL sen-
tences for defining
star schema tables
and multidimensional
issues in the Informix
MetaCube Decision
Support System.

create table Store (
ID0 integer primary key,
cod_store_ID char(10),
name char(10),
address char(10),
City_cod_city_ID integer,
City_name char(10),
City_population integer,
Province_cod_province_ID integer,
Province_name char(10),
Province_population integer,
State_cod_state_ID integer,
State_name char(10),
State_population integer,
Sales_area_cod_sales_ID integer,
Sales_area _name char(10),
Sales_area _population integer,
level_attribute integer);

insert into dim
(dim_id,dss_system_id,dim_desc,dim_type,dim_squema_name,dim_table_name,
dim_to_fact_key,agg_level_col)
values (1, 1, ‘Store’, 0, ‘user name’,’Store’,’cod_store_ID’, ‘level_attribute’);

insert into dim_el
(dim_el_id,dss_system_id,dim_id,dim_el_desc,dim_to_att_key,att_squema_name,
att_table_name, att_to_dim_key,base_element,agg_level)
values (1, 1, 1, ‘Store’, ‘cod_store_ID’,’user name’,’Store’,’ID0’,’N’, 1);

insert into att
(att_id, dss_system_id, dim_el_id, att_desc, att_col_name, default_flag, att_col_type,
sort_column) values (1, 1, 1, ‘cod_store_ID’, ‘cod_store_ID’, ‘N’, 1, ‘cod_Store_ID’);

insert into att
(att_id, dss_system_id, dim_el_id, att_desc, att_col_name, default_flag, att_col_type,
sort_column) values (2, 1, 1, ‘name’, ‘name’, ‘Y’, 1, ‘name’);

house and OLAP applications. We are also investi-
gating identification of materialized views by devel-
oping state and interaction diagrams from cube
classes. Further, we plan to integrate commercial
OLAP tool facilities within our GOLD Model Case
Tool, a task that involves data warehouse prototyp-
ing and sample data generation issues. ✸

Acknowledgment
We thank our colleague Cristina Cachero for her help-

ful comments on previous versions of this material.

References
1. G. Booch, J. Rumbaugh, and I. Jacobson, The Unified

Modeling Language User Guide, Addison Longman
Wesley, Reading, Mass., 1998.

2. J. Trujillo, The GOLD Model: An Object-Oriented Con-
ceptual Model for the Design of OLAP Applications,
doctoral dissertation, Languages and Information Sys-
tems Dept., Alicante University, Spain, June 2001.

3. J. Trujillo, J. and M. Palomar, “Modeling the Behavior
of OLAP Applications Using an UML Compliant
Approach,” Proc. 1st Int’l Conf. Advances in Informa-
tion Systems (ADVIS 00), vol. 1909, Lecture Notes in
Computer Science, Springer-Verlag, New York, 2000,
pp. 14-23.

4. J. Trujillo, M. Palomar, and J. Gómez, “Applying Object-
Oriented Conceptual Modeling Techniques to the Design
of Multidimensional Databases and OLAP Applica-
tions,” Proc. 1st Int’l Conf. Web-Age Information Man-
agement (WAIM 00), vol. 1846, Lecture Notes in
Computer Science, Springer-Verlag, New York, 2000,
pp. 83-94.

5. M. Golfarelli, D. Maio, and S. Rizzi, “The Dimensional
Fact Model: A Conceptual Model for Data Ware-
houses,” Int’l J. Cooperative Information Systems
(IJCIS), vol. 7, no. 2-3, 1998, pp. 215-247.

6. R. Kimball, The Data Warehousing Toolkit, John Wiley
& Sons, New York, 1996.

7. N. Tryfona, F. Busborg, and J.G. Christiansen, “StarER:
A Conceptual Model for Data Warehouse Design,” Proc.
ACM 2nd Int’l Workshop Data Warehousing and OLAP
(DOLAP 99), ACM Press, New York, 1999, pp. 3-8.

8. W. Lehner, “Modelling Large-Scale OLAP Scenarios,”
Proc. 6th Int’l Conference On Extending Database
Technology (EDBT 98), vol. 1377, Lecture Notes in
Computer Science, Springer-Verlag, New York, 1998,
pp. 153-167.

9. S. Chaudhuri and U. Dayal, “An Overview of Data
Warehousing and OLAP Technology,” ACM Sigmod
Record, vol. 26, no. 1, 1997, pp. 65-74.

10. C. Sapia, “On Modeling and Predicting Query Behav-
ior in OLAP Systems,” Proc. Int’l Workshop on Design
and Management of Data Warehouses (DMDW 99),

Swiss Life, Switzerland, 1999, pp. 1-10.
11. C. Sapia et al., “Extending the E/R Model for the Mul-

tidimensional Paradigm,” Proc. 1st Int’l Workshop on
Data Warehousing and Data Mining (DWDM 98), vol.
1552, Lecture Notes in Computer Science, Springer-
Verlag, New York, 1998, pp. 105-116.

12. W. Giovinazzo, Object-Oriented Data Warehouse
Design: Building a Star Schema, Prentice-Hall, Upper
Saddle River, N.J., 2000.

13. T.B. Pedersen and C.S. Jensen, “Multidimensional Data
Modeling of Complex Data,” Proc. 15th IEEE Int’l
Conf. Data Eng. (ICDE 99), IEEE CS Press, Los Alami-
tos, Calif., 1999, pp. 336-345.

14. K. Hahn, C. Sapia, and M. Blaschka, “Automatically
Generating OLAP Schemata from Conceptual Graphi-
cal Models,” Proc. ACM 3rd Int’l Workshop Data
Warehousing and OLAP (DOLAP 00), ACM Press,
New York, 2000, pp. 9-16.

Juan Trujillo is a professor at the Computer Science
School at the University of Alicante, Spain. His
research interests include database modeling, con-
ceptual design of data warehouses, multidimensional
databases, OLAP, and object-oriented analysis and
design with UML. Trujillo received a PhD in com-
puter science from the University of Alicante, Spain.
Contact him at jtrujillo@dlsi.ua.es.

Manuel Palomar is the head of the Language and
Information Systems Department at the Computer
Science School at the University of Alicante, Spain.
His research interests include databases, object-ori-
ented conceptual modeling of data warehouses,
OLAP, and natural-language processing. Palomar
received a PhD in computer science from the Techni-
cal University of Valencia, Spain. Contact him at
mpalomar@dlsi.ua.es.

Jaime Gomez is a professor of software engineering at
the Computer Science School at the University of Ali-
cante, Spain. His research interests include object-ori-
ented conceptual modeling of data warehouses,
OLAP, Web engineering, model-based code genera-
tion, and component-based development. Gomez
received a PhD in computer science from the Univer-
sity of Alicante, Spain. Contact him at jgomez@
dlsi.ua.es.

Il-Yeol Song is a professor at Drexel University. His
research interests include database modeling and
design and performance optimization of data ware-
houses, OLAP, database support for e-commerce sys-
tems, and object-oriented analysis and design with
UML. Song received a PhD in computer science from
Louisiana State University, Baton Rouge. Contact him
at songiy@drexel.edu.

December 2001 75

