
Multidimensional Databases

Torben Bach Pedersen Christian S. Jensen
Department of Computer Science, Aalborg University
Fredrik Bajers Vej 7E, DK-9220 Aalborg Ø, Denmark

phone: (+45)9635 8080, fax: (+45)9815 9889
email:

�
tbp,csj � @cs.auc.dk

Abstract

Multidimensional databases is a key technology in the en-
abling of interactive analyses of large amounts of data for
decision-making purposes. Multidimensional databases dif-
fer from previous technologies by viewing data specifically
as multidimensional cubes, which have proven to be partic-
ularly well suited for data analyses. Multidimensional mod-
els more specifically categorize data as either facts—which
are the entities of interest w.r.t. the analyses at hand, e.g.,
a purchase in a retail business—or dimensions, which are
mostly textual and characterize the facts, e.g., the location
of the purchase, the product being purchased, and the time
of the purchase. Facts have associated numerical measures
that capture the properties of the facts that are to be studied,
e.g., the total sales price. This article describes multidimen-
sional concepts such as cubes, facts, dimensions, measures,
and querying, including advanced issues, and it introduces
implementation techniques such as MOLAP, ROLAP, and
pre-aggregation.

Keywords: Database technology, data models, data anal-
ysis, multidimensional databases, On-Line Analytical Pro-
cessing.

1 Introduction

The relational data model, which was introduced by Codd
in 1970 and earned him the Turing Award a decade later,
was the foundation of today’s multi-billion-dollar database
industry. During the 1990s, a new type of data model, the
multidimensional data model, has emerged that has taken
over from the relational model when the objective is to ana-
lyze data, rather than to perform on-line transactions.

Multidimensional data models are designed expressly
with the purpose of supporting data analysis. A number
of such models have been proposed by researchers from
academia and industry. In academia, formal mathematical
models have been proposed, while the industrial proposals
have typically been more or less implicitly specified by the
concrete software tools that implement them.

Briefly, multidimensional models categorize data as being
either facts with associated numerical measures, or as being
dimensions that characterize the facts and are mostly textual.
For example, in a retail business, products are sold to cus-
tomers at certain times in certain amounts at certain prices.
A typical fact would be a purchase. Typical measures would

be the amount and price of the purchase. Typical dimensions
would be the location of the purchase, the type of product
being purchased, and the time of the purchase. Queries then
aggregate measure values over a range of dimension values
to aggregate results, e.g., total sales per month and product.

Multidimensional data models have three important ap-
plication areas within data analysis. First, multidimensional
models are used in data warehousing. A data warehouse is
a large repository of data integrated from several sources in
an enterprise for the specific purpose of data analysis. Typi-
cally, this data is modeled as being multidimensional, as this
best supports data analysis.

Second, multidimensional models lie at the core of On-
Line Analytical Processing (OLAP) systems. Such systems
provide fast answers for queries that aggregate large amounts
of detail data to find overall trends, and they present the re-
sults in a multidimensional fashion, which renders a multi-
dimensional data organization ideal for OLAP.

Third, multidimensional data is increasingly becoming the
basis for data mining, where the aim is the (semi-) auto-
matic discovery of unknown knowledge in large databases,
as it turns out that multidimensionally organized databases
are particularly well suited for the queries that are posed by
data mining tools.

This paper describes fundamental concepts in multidi-
mensional data models. The purpose of the paper is to ex-
tract and communicate the essence of the multitude of pro-
posed models clearly and comprehensibly. It is hoped that
this paper will then serve as an introduction of the concepts
and benefits of multidimensional databases, which are well-
known in the database community by now, to a broader com-
puter science community. In-depth coverage of the features
of individual models may be found elsewhere [8, 11].

2 Spreadsheets and Relations

Assume we want to analyze data about sales of products, for
which we capture the sales price, the product sold, and the
city in which it was sold. A simple example is shown in
Table 1.

When considering how to analyze such data, a spreadsheet
immediately comes to mind as a possibility—Table 1 is just
a two-dimensional spreadsheet.

Our first requirement is that we do not just want to see
sales by product and city, but also the two kinds of subto-
tals, sales by product and sales by city, and the grand total of
sales. This means that formulas for producing the (sub)totals

1

Product/City Aalborg Copenhagen Berkeley New York
Milk 123 555 145 5001
Bread 102 260 54 2010
Jeans 20 89 32 345
Lightbulps 22 213 32 9450

Table 1: Sales Data

must be added to the spreadsheet, each requiring some con-
sideration. It is possible, if rather cumbersome, to add new
data to the spreadsheet, e.g., if new products are sold. Thus,
for two dimensions, we can perhaps somehow manage with
a spreadsheet.

However, if we go to three dimensions, e.g., to include
time, we have to consider carefully what to do. The obvious
solution is to use separate worksheets to handle the extra di-
mension, with one worksheet for each dimension value. This
will work only for a few dimension values and only to some
extent. Analyses involving several values of the extra di-
mension are cumbersome, and with many thousands of, say,
time dimension values, the solution becomes infeasible; and
the situation becomes even worse if we need to support four
or more dimensions, which in any case will require a very
complex set-up.

Another problem arises if we want to group, e.g., the prod-
uct into higher-level product types like “food” and “non-
food.” Then we must duplicate the grouping information
across all worksheets, resulting in a system that uses con-
siderable extra space and is very hard to maintain. The
essence of the problem is that spreadsheets tie the storage
of data too tightly to the presentation—the structure and the
desired views of the information are not separated. How-
ever, spreadsheets are good for viewing and querying mul-
tidimensional data, e.g., using pivot tables. A pivot table is
a 2-dimensional table of data with associated subtotals and
totals. For example, if we add subtotals by City and Product
and a City/Product grand total to Table 1, we will have an
example of a pivot table. To support viewing of more com-
plex data, several dimensions may be nested on the � or �
axis and data may be displayed on multiple pages, e.g., one
for each product, Pivot tables generally also offer support
for interactively selecting subsets of the data and changing
the displayed level of detail.

With spreadsheets falling short for the management and
storage of multidimensional data, we can then consider us-
ing a SQL-based, relational system for data storage, as the
relational model offers considerable flexibility in the struc-
turing of data. The problem is here that many desirable com-
putations, including cumulative aggregates (sales in year to
date), totals and subtotals together, and rankings (top 10 sell-
ing products), are hard or impossible to formulate in standard
SQL.

The main underlying issue is that interrow computations
are difficult to express in SQL— only intercolumn computa-
tions are easy to specify. Additionally, transpositions of rows
and columns are not easily possible, requiring the manual
specification and combination of multiple views. Although
extensions of SQL, such as the data cube operator [2], query
windows [5], advanced by the standards bodies, will remedy
some of the problems, the concept of hierarchical dimen-

sions is still not handled satisfactorily.
To summarize, we have seen that neither spreadsheets nor

relational databases fully support the requirements for ad-
vanced data analysis. To be fair, these technologies may be
adequate in more restricted circumstances, e.g., if we have
only few dimensions, do not need hierarchical dimensions,
and the data volume is small, spreadsheets could provide
adequate support. However, the only robust solution to the
above problems is to provide data models and database tech-
nology that offer inherent support for the full range of mul-
tidimensional concepts.

3 Cubes

Data cubes provide true multidimensionality. They general-
ize spreadsheets to any number of dimensions. In addition,
hierarchies in dimensions and formulas are first-class, built-
in concepts, meaning that these are supported without du-
plicating their definitions. A collection of related cubes is
commonly referred to as a multidimensional database or a
multidimensional data warehouse.

Figure 1 shows a cube capturing the product sales from
Table 1 for the two Danish cities, with the additional dimen-
sion Time. The combinations of dimension values define the
cells of the cube. The actual sales prices are stored within
the corresponding cells.

In a cube, dimensions are first-class concepts with associ-
ated domains, meaning that the addition of new dimension
values is easily handled. Although the term “cube” implies
3 dimensions, a cube can have any number of dimensions.
It turns out that most real-world cubes have 4–12 dimen-
sions [3, 9]. Although there is no theoretical limit to the
number of dimensions, current tools often experience per-
formance problems when the number of dimensions is more
than 10–15. To better illustrate the high number of dimen-
sions, the term “hypercube” is often used instead of “cube.”

Depending on the specific application, a highly varying
percentage of the cells in a cube are non-empty, meaning
that cubes range from sparse to dense. Cubes tend to become
increasingly sparse with increasing dimensionality and with
increasingly finer granularities of the dimension values.

A non-empty cell is called a fact. The example has a fact
for each combination of time, product, and city where at least
one sale was made. A fact has associated with it a number of
measures. These are numerical values that “live” within the
cells. In our case, we have one measure, the sales price.

Generally, only 2 or 3 dimensions may be viewed at the
same time, although for low-cardinality dimensions, up to 4
dimensions can be shown by nesting one dimension within
another on the axes. Thus, the dimensionality of a cube is
reduced at query time by projecting it down to 2D or 3D

2

Related Terminology

OLAP: OLAP stands for On-Line Analytical Process-
ing, i.e., as opposed to the well-known OLTP (On-Line
Transaction Processing, the focus is on data analysis
rather than transactions. Furthermore, the analysis is
“On-Line,” i.e., fast query response is required.
Data Warehouse: A data warehouse is an integrated
repository of all enterprise data with the specific aim of
decision support, i.e., there is (typically) only one data
warehouse in an enterprise.
Data Mart: A data mart is a subset of the data ware-
house that is specialized for the needs of a special user
group, e.g., the marketing department.

Multidimensional History

Multidimensional databases do not have their origin in
database technology, but stem from multidimensional
matrix algebra, which has been used for (manual) data
analysis since the late 19th century.
During the late 1960s, two companies, IRI and
Comshare, independently began the development of sys-
tems that later turned into multidimensional database
systems. The IRI Express tool became very popular
in the marketing analysis area in the late 1970s and
early 1980s; it later turned into a market-leading OLAP
tool and was acquired by Oracle. Concurrently, the
Comshare system developed into System W, which was
used heavily for financial planning, analysis, and report-
ing during the 1980s.
In 1991, Arbor was formed with the specific pur-
pose of creating “a multiuser, multidimensional database
server,” which resulted in the Essbase system. Arbor,
now Hyperion, later licensed a basic version of Essbase
to IBM for integration into DB2. In 1993, Arbor and
Codd coined the term “OLAP” [1].
Another significant development in the early 1990s was
the advent of large data warehouses [3], which are typ-
ically based on relational star or snowflake schemas, an
approach to implementing multidimensional databases
using relational database technology.
In 1998, Microsoft ships its MS OLAP Server, the
first multidimensional system aimed at the mass market,
leading to the current situation where multidimensional
systems are becoming commodity products, shipped at
no extra cost together with leading relational database
systems.
A more in-depth coverage of the history of multidimen-
sional databases is available elsewhere [9].

2000 2001

Aalborg

Copenhagen

Milk

Bread

123 127

57 45

56 67

211

Figure 1: Sales Cube

via aggregation of the measure values in the projected-out
dimensions, resulting in higher-level measure values for the
desired view of data. For example, if we want to view just
sales by City and Time, we aggregate over the entire Product
dimension for each combination of City and Time. In our
example, we get the total sales for Copenhagen in 2001 by
adding 127 and 211.

An important goal of multidimensional modeling is to
“provide as much context as possible for the facts” [3]. The
concept of dimension is the central means of providing this
context. One consequence of this is a different view on
data redundancy than in relational databases. In multidimen-
sional databases, controlled redundancy is generally consid-
ered appropriate, as long as it considerably increases the
information value of the data. One reason to allow redun-
dancy is that multidimensional data is often derived from
other data sources, e.g., data from a transactional relational
system, rather than being “born” as multidimensional data,
meaning that updates can more easily be handled [3]. How-
ever, there is usually no redundancy in the facts, only in the
dimensions.

Having introduced the cube, we describe its principal ele-
ments, dimensions, facts, and measures, in more detail.

4 Dimensions

The notion of a dimension is an essential and distinguishing
concept in multidimensional databases. Dimensions are used
for two purposes: selection of data and grouping of data at
the desired level of detail.

A dimension is organized into a containment-like hierar-
chy, composed of a number of levels that each represent a
level of detail that is of interest to the analyses to be per-
formed. The instances of the dimension are typically called
dimension values. Each such value belongs to a particular
level. In some cases, it is advantageous for a dimension to
have multiple hierarchies defined on it, e.g., a Time dimen-
sion that has hierarchies for both Fiscal Year and Calendar
Year. Multiple hierarchies share one or more common low-
est level(s), e.g., Day and Month, and then group these into
multiple levels higher up, e.g., Fiscal Quarter and Calendar
Quarter to allow for easy reference to several ways of group-
ing. Most multidimensional models allow multiple hierar-
chies. A dimension hierarchy is defined in the metadata of

3

the cube, or the metadata of the multidimensional database,
if dimensions can be shared. This means that the problem
with duplication of hierarchy definitions discussed in Sec-
tion 2 is avoided.

In Figure 2, the schema and instances of a sample Loca-
tion dimension for the data in Table 1 are shown.

Location

City

Country USA Denmark

Berkeley New York Aalborg Copenhagen

TT

Figure 2: Schema and Instances for the Location Dimension

The Location dimension has three levels, the City level
being the lowest. City level values are grouped into Country
level values, i.e., countries. For example, Aalborg is in Den-
mark. The � level represents all of the dimension, i.e., every
dimension value is part of the � value.

In some multidimensional models, a level may have as-
sociated with it a number of level properties that are used to
hold simple, non-hierarchical, information. For example, the
package size for a given product can be a level property in
the Product level of the Product dimension. This information
could also be captured using an extra Package Size dimen-
sion. Using the level property has the effect of not increasing
the dimensionality of the cube.

Unlike the linear spaces used in matrix algebra, there is
typically no ordering and/or distance metric on the dimen-
sion values in multidimensional models. Rather, the only
ordering is the containment of lower-level values in higher-
level values.

However, for some dimensions, e.g., the Time dimension,
an ordering of the dimension values is available and is used
for calculating cumulative information such as “total sales in
year to date.” Most models require dimension hierarchies to
form balanced trees, i.e., the hierarchy must have uniform
height everywhere, the number of steps from the root (�) to
the leaves (lowest-level values) must always be the same, and
each non-top value has precisely one parent. In Section 9 we
discuss the relaxation of these constraints.

5 Facts

Facts are the objects that represent the subject of the desired
analyses, i.e., the interesting “thing,” or event in the enter-
prise that must be analyzed to understand its behavior.

In most multidimensional data models, the facts are im-
plicitly defined by their combination of dimension values. If
a non-empty cell exists for a particular combination, a fact
exists; otherwise no fact exists. (Some other models treat
facts as first-class objects with a separate identity, see [8] for
details.) Next, most multidimensional models require that
each fact be mapped to one dimension value at the lowest

level in each dimension. Other models relax this require-
ment [8].

A fact has a certain granularity, determined by the lev-
els from which its combination of dimension values are
drawn. For example, the fact granularity in our example
cube is “Year by Product by City.” Granularities consisting
of higher-level or lower-level dimensions levels than a given
granularity, e.g., “Year by Type by City” and “Day by Prod-
uct by City” for our example are said to be coarser or finer
than the given granularity, respectively.

It is commonplace to distinguish among three kinds of
facts, event facts, snapshot facts, and cumulative snapshot
facts [3]. Event facts (at least at the finest granularity) typi-
cally model events in the real world, meaning that the same
instance of the underlying real-world phenomena is repre-
sented by one fact. Examples of event facts include sales,
clicks on web pages, and movement of goods in and out of
(real) warehouses (flow).

A snapshot fact models the state of a given entity at a
given point in time. Typical examples of snapshot facts in-
clude the inventory levels in stores and warehouses, and the
number of users using a web site. For snapshot facts, the
same instance of the underlying real-world phenomena, e.g.,
a specific can of beans on a shelf, may occur in several facts
at different time points.

Cumulative snapshot facts are used to handle information
about activity up to a certain point in time. For example, we
may consider the total sales in year to date or fact. Then the
total sales up to and including the current month this year
can be easily compared to the figure for the corresponding
month last year.

Often, all three types of facts can be found in a given data
warehouse, as they support complementary classes of analy-
ses. Indeed, the same base data, e.g., the movement of goods
in a (real) warehouse, may often find its way into three cubes
of different types, e.g., warehouse flow, warehouse inven-
tory, and warehouse flow in year-to-date.

6 Measures

A measure has two components: a numerical property of
a fact, e.g., the sales price or profit, and a formula (most
often a simple aggregation function such as SUM) that can
be used to combine several measure values into one. In a
multidimensional database, measures generally represent the
properties of the chosen facts that the users want to study,
e.g., with the purpose of optimizing them.

Measures then take on different values for different com-
binations of dimension values. The property and formula are
chosen such that the value of a measure is meaningful for all
combinations of aggregation levels. The formula is defined
in the metadata and thus not replicated as in the spreadsheet
example. Although most multidimensional data models have
measures, some do not. In these, dimension values are also
used for computations, thus obviating the need for measures,
but at the expense of some user-friendliness [8].

It is important to distinguish among three classes of mea-
sures, namely additive, semi-additive, and non-additive mea-
sures, as these behave quite differently in computations.

4

Additive measure values can be meaningfully combined
along any dimension. For example, it makes sense to add the
total sales over Product, Location, and Time, as this causes
no overlap among the real-world phenomena that caused the
individual values. Additive measures occur for any kind of
fact.

Semi-additive measure values cannot be combined along
one or more of the dimensions, most often the Time dimen-
sion. Semi-additive measures generally occur when the fact
is of type snapshot or cumulative snapshot. For example,
it does not make sense to sum inventory levels across time,
as the same physical phenomenon may be counted several
times, but it is meaningful to sum inventory levels across
products and warehouses.

Non-additive measure values cannot be combined along
any dimension, usually because of the chosen formula. This
occurs when averages for lower-level values cannot be com-
bined into averages for higher-level values. Non-additive
measures can occur for any kind of fact.

7 Querying

A multidimensional database naturally lends itself towards
certain types of queries.

The queries known as slice and dice perform selections
on a cube, thus reducing the cube. Their effect is similar
to that of preparing an onion for cooking. For example, we
may slice the cube in Figure 1 by considering only those
cells in the cube-slice that concerns “Bread”; and we may
further slice this slice, e.g., by considering only the cells for
“2000.” When we select a single value in a dimension, we in
a sense reduce the dimensionality of the cube (strictly speak-
ing, the dimension remains), but more general selections are
also possible.

The operations known as drill-down and roll-up are in-
verses of each other and make use of dimension hierarchies
and measures to perform aggregations. Consider the loca-
tion dimension in Figure 2 together with the cube, where
the (additive) measure is the count of sales together with
the function SUM. We may roll from City level to Coun-
try level. This results in the values for all cities in the same
country being aggregated. In our cube, values for “Aalborg”
and “Copenhagen” are aggregated into a single “Denmark”
value. For the “Bread” slice, this yields two cells, with val-
ues 180 (for year 2000) and 172 (for year 2001).

Slicing and dicing may be combined with drill-down and
roll-up. Rolling up to the top value in a dimension corre-
sponds in a sense (different from above) to omitting the di-
mension.

When a multidimensional database consists of several
cubes that share one or more dimensions, it is possible to
combine the cubes via the shared dimensions, via a so-called
drill-across operation. In relational algebraic terms, this op-
eration performs a join.

Next, operations are also available that enable the user to
manipulate the visualization of a cube, e.g., by rotating it to
make a different set of dimensions “face the user,” i.e., to see
the data grouped by other dimensions.

Queries involving order are very important in data anal-

yses and are thus supported by all multidimensional data
analysis tools. These may order cells in results, and they
may return only those cells that appear at the top or bottom
of the specified order. For example, one may wish to re-
trieve the ten best selling products in “Copenhagen” in year
2000. Such queries are often referred to as ranking or TOP
N/BOTTOM N queries [9].

8 Implementation

One may distinguish among two major approaches to imple-
menting multidimensional databases, termed multidimen-
sional versus relational on-line analytical processing. We
contrast first the two and then consider the latter in some
additional detail.

Multidimensional Versus Relational OLAP Multidi-
mensional OLAP (MOLAP) systems store data on disk in
a specialized multidimensional structures. These typically
include provisions for handling sparse arrays, and they ap-
ply advanced indexing and hashing to locate the data when
performing queries [9]. Relational OLAP (ROLAP) sys-
tems [3] use relational database technology for storing the
data, while employing also specialized index structures, such
as bit-mapped indices, to achieve good query performance.

Generally, MOLAP systems provide faster query response
times and more space-efficient storage, while ROLAP sys-
tems scale better in the number of facts, are more flexible
with respect to cube redefinitions, and provide better support
for frequent updates. The virtues of the two approached are
combined in the Hybrid OLAP (HOLAP) approach, which
stores higher-level summary data using MOLAP technology,
while using ROLAP systems to store the detail data.

Relational OLAP ROLAP implementations typically em-
ploy star or snowflake schemas [3], both of which store the
data in fact tables and dimension tables. A fact table holds
one row for each fact in the cube. It has a column for each
measure that contain the measure value for the particular
fact, and it has a column for each dimension, containing a
foreign key referencing a dimension table for the particular
dimension.

The difference between star and snowflake schemas lies in
their handling of dimensions. A star schema has one dimen-
sion table for each dimension. The dimension table contains
a key column, one column for each level in the dimension,
containing textual descriptions of the values for that level,
and one column for each level property in the dimension. An
example star schema for the Sales cube is seen in Table 2.

5

Achieving Fast Query Response Time

The most essential performance-enhancing technique in
multidimensional databases is pre-computation and its
more specialized cousin, pre-aggregation, which enable
fast-enough response times to queries involving poten-
tially huge amounts of data to allow interactive data anal-
ysis. As an example application of pre-aggregation, we
may compute and store (materialize) the total sales of a
product by country and month.
This enables fast answers to queries that ask for the total
sales, e.g., by month alone, by country alone, or by quar-
ter and country in combination. These answers may be
derived from the pre-computed results alone; access to
the bulks of data in the data warehouse is unnecessary.
Pre-aggregation has attracted substantial attention in the
research community [7] and the latest versions of com-
mercial relational database products, as well as the ded-
icated multidimensional systems, offer query optimiza-
tion based on pre-computed aggregates, as well as auto-
matic maintenance of the stored aggregates when base
data is updated [12].
Full pre-aggregation, where all combinations of aggre-
gates are materialized, is infeasible as it takes too much
storage and initial computation time. Instead, modern
OLAP systems adopt the practical pre-aggregation ap-
proach of materializing only select combinations of ag-
gregates and then re-use these to efficiently compute
other aggregates [9, 10]. This re-use of aggregates re-
quires a well-behaved structure of the multidimensional
data.

ProductID Product Type
1 Milk Food

Product

LocID City Country
1 Aalborg Denmark

Location

ProductID LocID TimeID Sale
1 1 1 5.75

Sale (Fact Table)

TimeID Day Month Year
1 25 May 2001

Time

Table 2: Star Schema For Sales Cube

The fact table of the star schema holds the sales price for
one particular sale and its related dimension values. The fact
table has a foreign key column for each of the three dimen-
sions, Product, Location, and Time. The dimension tables
have corresponding key columns and one column for each
of their levels, e.g., LocID, City, and Country. No column is
needed for the � level, as that column would always hold the
same value. The key column in a dimension table is typically
a “dummy” integer key without any semantics. This has sev-
eral advantages over the option of using information-bearing
keys from the source systems, including better storage use,
prevention of key re-use, and better support for dimension
updates [3].

It can be seen that there will be redundancy in higher-level
data. For example, if we have 31 day values in May 2001,

the year value “2001” will be repeated 30 times. However, as
dimensions typically only take up 1–5% of the total storage
required for a cube, redundancy is not a problem space-wise,
and since the updates of dimensions is handled centrally, it is
also possible to ensure consistency. Thus, it is often a good
idea to use redundant dimension tables in order to support
simpler formulation of (and better-performing) queries.

TypeID Type
1 Food

Type

CntID Country
1 Denmark

Country

ProductID Product TypeID
1 Milk 1

Product

LocID City CntID
1 Aalborg 1

City

ProductID LocID TimeID Sale
1 1 1 5.75

Sale (Fact Table)

TimeID Day MonthID
1 25 1

Day

MonthID Month YearID
1 May 1

Month

YearID Year
1 2001

Year

Table 3: Snowflake Schema For Sales Cube

Snowflake schemas contain several dimension tables for
each dimension, namely one table for each level. This means
that redundancy is avoided, which may be advantageous in
some situations. The dimension tables contains a key, a col-
umn holding textual descriptions of the level values, and pos-
sibly columns for level properties. Tables for lower levels
also contain a foreign key to the containing level.

Table 3 show a snowflake schema for the Sales cube. For
example, the Day table in Table 3 contain an integer key, the
date, and a foreign key to the Month table. Note that no year
values will be replicated.

The choice of star versus snowflake schemas depend
highly on the desired properties of the system being devel-
oped. Due to space constraints, we do not give a full discus-
sion here.

9 Complex Multidimensional Data

The traditional multidimensional data models and imple-
mentation techniques assume that the data being modeled
is quite regular. Specifically, it is typically assumed that all
facts map (directly) to dimension values at the lowest levels
of the dimensions and only to one value in each dimension.
Further, it is assumed that the dimension hierarchies are sim-
ply balanced trees. In many cases, this is adequate to support
the desired applications satisfactorily. However, situations
occur where these assumptions fail.

6

In such situations, the support offered by “standard” mul-
tidimensional models and systems is inadequate, and more
advanced concepts and techniques are called for. We pro-
ceed to review the impact of irregular hierarchies on the per-
formance enhancing technique known as partial, or practical,
pre-computation.

Complex multidimensional data are problematic as they
are not summarizable. Intuitively, data is summarizable if
the results of higher-level aggregates can be derived from
the results of lower-level aggregates. Without summarizabil-
ity, users will either get wrong query results, if they base
them on lower-level results, or we cannot use pre-computed
lower-level results to compute higher-level results. When it
is no longer possible to pre-compute, store, and subsequently
reuse lower-level results for the computation of higher-level
results, aggregates must instead be calculated directly from
base data, which leads to considerable increases in computa-
tional costs.

It has been shown that summarizability requires that ag-
gregate functions be distributive and that the ordering of di-
mension values be strict, onto, and covering [4, 8]. Infor-
mally, a dimension hierarchy is strict if no dimension value
has more than one (direct) parent, onto if the hierarchy is bal-
anced, and covering if no containment path skips a level. In-
tuitively, this means that dimension hierarchies must be bal-
anced trees. If this is not the case, some lower-level values
will be either double-counted or not counted when reusing
intermediate query results.

USA Denmark

New York

Copenhagen

T

California

AalborgNew YorkBerkeley

Finance Research

USLogistics

T

Testcenter

Logistics

USFinance

Figure 3: Irregular Dimensions

Figure 3 contains two dimension hierarchies: a Location
hierarchy including a State level, and the hierarchy for the
Organization dimension for some company. The hierarchy to
the left is non-covering, as Denmark has no states. If we pre-
compute aggregates at the State level, we will have no values
for Aalborg and Copenhagen, meaning that facts mapped to
these cities will not be counted when computing country to-
tals.

To the right in figure, the hierarchy is non-onto because
the Research department has no further subdivision. If we
materialize aggregates at the lowest level, facts mapping di-
rectly to the Research department will not be counted. The
hierarchy is also non-strict as the TestCenter is shared be-
tween Finance and Logistics. If we materialize aggregates at
the middle level, data for TestCenter will be counted twice,
for both Finance and Logistics, which is what we want at this
level. However, this means that data will be double-counted
if we combine these aggregates into the grand total.

Irregular dimension hierarchies occur in many contexts,
including organization hierarchies [14], medical diagnosis

hierarchies [6], and concept hierarchies for web portals [13].
A solution to the problems with irregular hierarchies is to
normalize the hierarchies, a process that pads non-onto and
non-covering hierarchies with “dummy” dimension values
to make them onto and covering, and fuses sets of parents
in order to remedy the problems with non-strict hierarchies.
This transformation may be accomplished transparently to
the user [7].

10 Summary

The continued advances in key information technology ar-
eas as well as the increasing electronic capture of business
data have made possible the collection of very large volumes
of business data. Advances in software technologies have
contributed significantly to the provision of systems with re-
sponse times that enable interactive analyses of such data.

At the core of these software technologies lies a type of
data model that espouses a multidimensional view of data.
While this type of model originally evolved from multidi-
mensional matrix algebra, it has in recent years been influ-
enced and enriched by the insights gained in the areas of
semantic as well as scientific and statistical data models.

Multidimensional models view data as consisting of busi-
ness facts, with associated measures, that are characterized
by descriptive data values organized in multiple dimensions.
Dimension values are organized in containment-type hierar-
chical structures that enable the computation of aggregate
queries at different levels of granularity. This data organiza-
tion lends itself towards graphical formulation of aggregate
queries and graphical display of their results, and it is also
conducive to the efficient evaluation of aggregate queries.

References
[1] E. F. Codd. Providing OLAP (on-line analytical processing)

to user-analysts: An IT mandate. E.F. Codd and Assoc., 1993.

[2] J. Gray et al. Data Cube: A Relational Aggregation Opera-
tor Generalizing Group-By, Cross-Tab and Sub-Totals. Data
Mining and Knowledge Discovery, 1(1):29–54, 1997.

[3] R. Kimball. The Data Warehouse Toolkit. Wiley Computer
Publishing, 1996.

[4] H. Lenz and A. Shoshani. Summarizability in OLAP and
Statistical Data Bases. In Proc. of SSDBM, pp. 39–48, 1997.

[5] A. Eisenberg and J. Melton. SQL Standardization: The Next
Steps. SIGMOD Record 29(1):63–67, 2000.

[6] National Health Service (NHS). Read Codes version 3. NHS,
September 1999.

[7] T. B. Pedersen, C. S. Jensen, and C. E. Dyreson. Extending
Practical Pre-Aggregation in On-Line Analytical Processing.
In Proc. of VLDB, pp. 663–674, 1999.

[8] T. B. Pedersen, C. S. Jensen, and C. E. Dyreson. A Founda-
tion for Capturing and Querying Complex Multidimensional
Data. Information Systems 26(5):383–423 - Special Issue:
Data Warehousing, 2001.

[9] E. Thomsen. OLAP Solutions: Building Multidimensional
Information Systems. Wiley, 1997.

[10] E. Thomsen, G. Spofford, and D. Chase. Microsoft OLAP
Solutions. Wiley, 1999.

7

[11] P. Vassiliadis and T. K. Sellis. A Survey of Logical Models
for OLAP Databases. SIGMOD Record 28(4):64–69, 1999.

[12] R. Winter. Databases: Back in the OLAP game. Intelligent
Enterprise Magazine, 1(4):60–64, 1998.

[13] Yahoo! Corporation. � www.yahoo.com � . Current as of Au-
gust 30, 2001.

[14] T. Zurek and M. Sinnwell. Data Warehousing Has More
Colours Than Just Black and White. In Proc. of VLDB,
pp. 726–729, 1999.

Torben Bach Pedersen is an associate professor of Com-
puter Science at Aalborg University, Denmark. His research
interest includes multidimensional databases, OLAP, data
warehousing, federated databases, and location-based ser-
vices. He received the Ph.D. degree in Computer Science
from Aalborg University. He is a member of the IEEE,
the IEEE Computer Society, and the ACM. Contact him at
tbp@cs.auc.dk.

Christian S. Jensen is a professor of Computer Science at
Aalborg University, Denmark. His research interests include
multidimensional databases, data warehousing, temporal and
spatio-temporal databases, and location-based services. He
received the Ph.D. and Dr.Techn. degrees in Computer Sci-
ence from Aalborg University. He is a senior member of the
IEEE and a member of the the IEEE Computer Society and
the ACM. Contact him at csj@cs.auc.dk

8

