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Abstract 
 
Data warehousing and on-line analytical processing (OLAP) is becoming an 
important tool for decision making in corporations and other organizations. It is one 
of the main focuses of the database industry. However, the functions and properties of 
decision support system are rather different from the traditional database application.  
For example, user of decision support system may be interested in the trend of certain 
data instead of the actual data itself.  Another feature of data warehouse system is 
that the amount of data inside is tremendous, which means that the traditional query 
process on these data will be very time consuming.  In this survey paper, we will 
mainly discuss several techniques used in data warehouse to accelerate the OLAP 
process speed. 
 
The rest of paper is organized as follows:  Chapter 1 is the introduction, in which we 
will give an overview of current technology used in the area of data warehousing and 
OLAP.  In chapter 2, we will t alk about a new aggregation operator which is called 
Data Cube operator.  The Data Cube operator can perform N-dimensional 
aggregation.  From chapter 3, we will begin to discuss one of the most importation is 
issue in data warehousing and OLAP.  That is view materialization and view 
maintenance.  In chapter 3, a general introduction to the problems and techniques of 
materialized views maintenance will be given.  In chapter 4, some techniques 
developed base on the space constrain of data warehouse will be discussed.  In 
chapter 5, we will use a dynamic view management system to discuss the techniques 
of dynamic view selection and view maintenance. 
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Chapter 1. Introduction 
 
A data warehouse is a collection of data, which help decision-makers in a corporation 
or organization to make better and faster decisions.  It collects data from various 
sub-branches of the corporation, derived meaningful information from data obtained 
from other operational databases using in the sub-branches and other external sources.  
For example, a large corporation headquartered at New York has several sub-branches 
across the U.S.  A data warehouse is located in the headquarter at New York and it 
obtains information of sales, customers, suppliers, etc. from the databases in the 
sub-branches.  The data warehouse can then derived information like trends of sales 
of product, etc.  Decision-makers in the corporation can use this information to help 
making important decisions.  The data in a data warehouse are often modeled in a 
multidimensional view, which can be easily converted to relational model. 
 
OLAP is the technique to load and transfer data from external sources to the data 
warehouses, to derive useful information and to support queries on such kind of 
information.  OLAP applications are typically query intensive.  Operations in 
OLAP include rollup, drill -down, slice_and_dice and pivot. 
 
The requirements of data warehouse and OLAP are quite different from those 
traditional databases.  In traditional databases, tasks are generally based on short and 
independent transactions.  Consistency and recoverabili ty is a main concern in 
traditional databases.  It needs to handle up-to-date, accurate and detailed individual 
records.  It requires hundreds of megabytes to gigabytes of storage capacity. 
 
However, in data warehouse and OLAP need historical, summarized and consolidated 
data.  The data is collected from certain operational databases and other external 
sources.  It is query intensive and requiring to handle complex queries with many 
scans, joins and aggregates.  It requires hundreds of gigabytes to terabytes of storage 
capacity. 

 
Figure 1.1 Architecture of typical Data Warehouse system 
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Figure 1.1 shows the architecture of a typical data warehouse system.  There are 
tools to extract, transform and load data from data sources such as operational 
databases in the corporations and other external sources.  The tools will also do 
refresh to get up-to-date information to the data warehouse from changes in the data 
sources.  There is the main data warehouse and some data marts located in regions 
nearer to the data sources to share jobs of the main data warehouse for load balancing 
and higher availabili ty.  The main data warehouse and the data marts are managed by 
one or more warehouse servers (OLAP servers).  There is a metadata repository and 
monitoring and administration system.  There are also some front-end tools li ke 
analysis tools, query tools and data mining tools. 
 
The OLAP tools can do data cleaning, which means detecting data anomalies in the 
data sources and do corrections to them.  Data anomalies include inconsistent field 
lengths, inconsistent descriptions, inconsistent value assignments, missing entries and 
violation of integrity constraints.  The OLAP tool for load need to do some 
preprocessing before the data is actually stored in the data warehouse.  Such 
preprocessing includes checking integrity constraints in the warehouse, sorting, 
summarization, aggregation, building indices and partitioning data to multiple storage 
areas.  The tool for refresh is responsible for propagating updates of source data to 
the data warehouse. 

 
Figure 1.2 Multidimensional view of data 

 
As the data in data warehouse is often modeled multidimensionally, we need to have a 
look at the multidimensional view of data in data warehousing and OLAP.  Figure 
1.2 shows an example of such a view.  We have numeric measures such as sales 
figures, which are the main objects of analysis.  A set of dimensions, such as time, 
city and product, gives the context for the measures.  Dimensions are often 
hierarchical in nature.  For example, the number 50 in the cube shown in figure 2 
means that the sales figure of Cola on date 1 is 50 in all the cities. 
 
We can now have a look at some OLAP operations after we have a glance at the 
multidimensional view of data in data warehousing and OLAP.  Pivoting is to select 
2 or more dimensions that are used to aggregate a measure.  From figure 2, we can 
select the 2 dimensions Product and Date to aggregate the measure sales figures.  We 
can look at the aggregated sales figures of different product at different date from this 
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view.  The operation rollup is to take the current object and do a further group-by on 
one dimension.  For example, after we have pivoted for the 2 dimensions Product 
and Date, we can have a further group-by on the dimension Product.  The result will 
be a view of aggregated data of different product in all the dates.  The operation 
drill -down is just the opposite operation of rollup.  The slice_and_dice operation is 
to reduce the dimensionali ty of the data.  In other words, it is to take a projection of 
data on a subset of dimensions for selected values of the other selections.  From 
figure 2, we can slice_and_dice sales figures for the Product Cream to create a table 
that consists of the 2 dimensions City and Date only. 
 
Like in traditional databases, there are some metadata needed to be stored for the 
operation of the data warehouse.  Metadata for data warehousing and OLAP can be 
classified into 3 main types.  Administrative metadata is information necessary for 
setting up the data warehouse, li ke locations of data sources, locations of data marts, 
etc.  Business metadata includes business terms, definitions and data ownership, etc.  
Operational metadata are information collected during operations, li ke status of data, 
and monitoring information, li ke usage statistics and error reports. 
 
Data warehousing is quite a recent field of study among researchers in databases.  
Some hot topics in this area include data cleaning, index selections, data partitioning, 
materialized vies and data warehouse management. 
 
In later sections, we describe the use of data cube, which is a special data structure 
used in data warehousing and OLAP to represent the multidimensional model of data. 
We wil l also discuss some techniques used in materialized views selection and 
maintenance to speed up queries.  
 
 
 



 6 

Chapter 2. Data Cube Operator 
 
2.1 Introduction 
Data warehousing usually refers huge amounts of data. The data analysis required are 
extracting relevant data from the warehouse, aggregating data and analyzing the 
results. 
 
Data extraction and aggregation are common in SQL statements.  SQL standard 
aggregation functions includes COUNT(), SUM(), MIN(), MAX() and AVG(). To 
group the results, we use GROUP BY. Some systems allow more different or even 
user-defined aggregation functions. Aggregation and grouping of results is widely 
used in database benchmarks. They are not only for data warehousing. 
 
This section is based on data cube thesis written by Jim Gray et al. and aims at giving 
you an overview of the data cube and data cube operators. It starts with the 
Introduction, follows by Data extraction and aggregation in SQL, then introduces the 
Problems with GROUP BY and explains the CUBE and ROLLUP operators. After 
that, it discusses Computing cubes and Maintaining cubes. Finally, it gives the 
Summary. 
 
2.2 Problems with GROUP BY 
The GROUP BY relational operator partitions a table into groups. Each group is then 
aggregated by a function. The aggregation function summarizes some column of 
groups returning a value for each group. 
 
 

Grouping Values

Partitioned Table

Sum()

Aggregate Values

 
Figure 2.1 

 
Certain forms of data analysis are diff icult i f not impossible with the SQL constructs.   
Three common problems are: 
• Histograms 
• Roll -up Totals and Sub-Totals for drill -downs 
• Cross Tabulations 
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The first problem is that GROUP BY does not allow direct aggregation over 
computed categories. For a table Weather  with the following attributes, histograms 
would be easy if function values were allowed in the GROUP BY li st. For example, it 
would be nice to be able to group times into days, weeks, or months, and to group 
locations into areas (e.g., US, Canada, Europe,...) in queries. 
 
Time (UCT) Latitude Longitude Altitude (m) Temp © Pres (mb) 
27/11/94:1500 37:58:33N 122:45:28W 

����� ��� �������
27/11/94:1500 34:16:18N 27:05:55W 

��� ��� �����
	

Table 2.1 

If that were allowed, the following query would give the daily maximum reported 
temperature. 
 
SELECT     day, nation, MAX(Temp)  
FROM       weather  
GROUP BY   Day(T ime) AS day,   
           Country(Latitude,Longitude)AS nation;  
 
However, Some SQL systems support histograms but the standard does not.  Rather, 
one must construct a table-valued expression and then aggregate over the resulting 
table. The following statement demonstrates this SQL92 construct.   
 
SELECT day, nation, MAX(Temp)  
FROM  (SELECT  Day(Time) AS day,   
  Country(Latitude, Longitude) AS nation, Temp   
   FROM  Weather  ) AS foo   
GROUP BY day, nation;  
 
The second problem is for Roll -Up aggregation or dril l-down reports you have to 
store each level i.e. subtotal of the aggregation. Reports commonly aggregate data at a 
coarse level and then at successively finer levels. The following report of car sales 
shows the idea.  Data is aggregated by Model, then by Year, then by Color.   The 
report shows data aggregated at three levels.  Going up the levels is called rolli ng-up 
the data. Going down is called dr illi ng-down into the data. 
Sales Roll Up by Model by Year by Color 

 
Model 

 
Yea
r 

 
Color  

 Sales  
 By Model 
 By Year 
 By Color  

Sales 
by Model 
by Year  
 

Sales 
by Model 
 

Chevy         199
4 

black 50                                                                       

   white 40     
      90  
 199

5 
black 85    

  white 115     
      200  
       290 

Table 2.2 
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The above table is not relational –null values in the primary key are not allowed.  It 
is also not convenient -- the number of columns grows as the power set of the number 
of aggregated attributes.  The following table is a relational and more convenient 
representation where the dummy value "ALL" has been added to fill i n the 
super-aggregation items. 
 

Sales Summary 
Model Year Color  Units 
Chevy         1994 black 50 
Chevy         1994 white 40 
Chevy         1994 ALL 90 
Chevy         1995 black 85 
Chevy         1995 white 115 
Chevy         1995 ALL 200 
Chevy         ALL ALL 290 

Table 2.3 

The solution ideas are to add new columns for each combination of aggregated 
attributes you are interested in - poor solution, redundant, waste of storage, and to 
introduce the 'ALL' value. This value represents the set of all values that exist in a 
certain column.  
 
The standard SQL statement to build this Sales Summary table from the raw 
Sales data is: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Roll -up is asymmetric while the third problem is, oppositely, related to the symmetric 
aggregation result table called the cross-tabulation, or cross tab for short. Building a 
cross-tabulation with SQL is even more daunting since the result is not a really a 
relational object – the bottom row and the right column are “unusual” . Cross tab data 
is routinely displayed in the more compact format as follows: 

SELECT  Model, ALL, ALL, SUM(Sales)  
FROM  Sales  
WHERE Model = 'Chevy'  
GROUP BY Model  
UNION 
SELECT  Model, Year, ALL, SUM(Sales)  
FROM  Sales  
WHERE Model = 'Chevy'  
GROUP BY Model, Year  
UNION 
SELECT  Model, Year, Color, SUM(Sales)  
FROM  Sales  
WHERE Model =  'Chevy'  
GROUP BY Model, Year, Color;  
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Chevy Sales Cross Tab 
Chevy  1994 1995  total 

(ALL) 
black  50 85 135 
White 40 115 155 

 total 
(ALL) 

90 200 290 

Table 2.4 

This cross tab is a two-dimensional aggregation. If other automobile models are added, 
it becomes a 3D aggregation.  For example, data for Ford products adds an 
additional cross tab plane. 
 
Ford Sales Cross Tab  
Ford  1994 1995  total 

(ALL) 
Black  50 85 135 
White 10 75 85 

 total (ALL) 60 160 220 

Table 2.5 

The cross tab array representation is equivalent to the relational representation using 
the ALL value. Both generalize to an N-dimensional cross tab. The representation and 
the use of unionized GROUP BYs "solves" the representation problem – it represents 
aggregate data in a relational data model. The problem remains that expressing 
histogram, roll -up, drill -down, and cross-tab queries with conventional SQL is 
daunting. A 6D cross-tab requires a 64-way union of 64 different GROUP BY operators 
to build the underlying representation. Incidentally, on most SQL systems this will 
result in 64 scans of the data, 64 sorts or hashes, and a long wait. Building a 
cross-tabulation with SQL is even more daunting since the result is not a really a 
relational object – the bottom row and the right column are “unusual” . 
 
2.3 CUBE and ROLLUP operators 
The CUBE operator builds a table with all aggregated values. CUBE is a relational 
operator. ROLLUP builds a roll -up of a table, i.e.  
v1, v2,..., vn, f() 
v1, v2,..., 'ALL', f() 
... 
v1, 'ALL',..., 'ALL', f() 
'ALL', 'ALL',..., 'ALL', f() 
where f() is an aggregation function. 
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2.4 The Data Cube Operator 
The CUBE operator is the N-dimensional generalization of simple aggregate functions.    
The 0D data cube is a point, the 1D data cube is a line with a point, the 2D data cube 
is a cross tabulation, a plane, two lines, and a point and the 3D data cube is a cube 
with three intersecting 2D cross tabs. 
 

CHEVY 

FORD 1990
1991

1992
1993

RED
WHITE
BLUE

By Color

By Make & Color

By Make & Year

By Color & Year

By Make
By Year

Sum

The Data Cube and  
The Sub-Space AggregatesSum

RED
WHITE
BLUE

Chevy Ford

By Make

By Color
Cross Tab

RED
WHITE
BLUE

By Color

Sum

Group By 
(with total)

Sum

Aggregate

 
Figure 2.2 

 
 
2.5 Syntax 
Basic Cube Syntax 
Here is an basic CUBE syntax example: 
 
 
 
 
 
 
 
 
It first aggregates over all the <select list> attributes as in a standard GROUP BY, 
then adds UNIONs in each super-aggregate of the global cube which is substituting 
ALL for the aggregation columns. If there are N attributes in the select list, there wil l 
be 2N-1 super-aggregate values. 

 
SELECT    day, nation, MAX(Temp)  
FROM        Weather  
GROUP BY   CUBE (   Day(Time) AS day,  
        Country(Latitude, Longitude) AS nation 
                   ); 
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For the following statement, a 3D data cube (right) is built from the table at the left: 
 
 
 
 

SELECT Model, Year, Color, SUM(sales) AS Sales  
FROM   Sales  
WHERE  Model in {'Ford', 'Chevy'}   

AND Year BETWEEN 1990 AND 1992  
GROUP BY CUBE(Model, Year, Color);  

             SALES
Model Year Color Sales
Chevy 1990 red 5

Chevy 1990 white 87

Chevy 1990 blue 62

Chevy 1991 red 54

Chevy 1991 white 95

Chevy 1991 blue 49

Chevy 1992 red 31

Chevy 1992 white 54

Chevy 1992 blue 71

Ford 1990 red 64

Ford 1990 white 62

Ford 1990 blue 63

Ford 1991 red 52

Ford 1991 white 9

Ford 1991 blue 55

Ford 1992 red 27

Ford 1992 white 62

Ford 1992 blue 39

       DATA CUBE
Model Year Color Sales

CUBE

Chevy   1990    blue     62
Chevy   1990     red      5
Chevy   1990   white     95
Chevy   1990     ALL    154
Chevy   1991    blue     49
Chevy   1991     red     54
Chevy   1991   white     95
Chevy   1991     ALL    198
Chevy   1992    blue     71
Chevy   1992     red     31
Chevy   1992   white     54
Chevy   1992     ALL    156
Chevy    ALL    blue    182
Chevy    ALL     red     90
Chevy    ALL   white    236
Chevy    ALL     ALL    508
Ford    1990    blue     63
Ford    1990     red     64
Ford    1990   white     62
Ford    1990     ALL    189
Ford    1991    blue     55
Ford    1991     red     52
Ford    1991   white      9
Ford    1991     ALL    116
Ford    1992    blue     39
Ford    1992     red     27
Ford    1992   white     62
Ford    1992     ALL    128
Ford     ALL    blue    157
Ford     ALL     red    143
Ford     ALL   white    133
Ford     ALL     ALL    433
ALL     1990    blue    125
ALL     1990     red     69
ALL     1990   white    149
ALL     1990     ALL    343
ALL     1991    blue    106
ALL     1991     red    104
ALL     1991   white    110
ALL     1991     ALL    314
ALL     1992    blue    110
ALL     1992     red     58
ALL     1992   white    116
ALL     1992     ALL    284
ALL      ALL    blue    339
ALL      ALL     red    233
ALL      ALL   white    369
ALL      ALL     ALL    941

  
  

 
Figure 2.3 
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For such a SALES table, it has 2x3x3 = 18 rows while the derived data cube has 
3x4x4, i.e. 48 rows. And the respective sets are: 
 
 
 
 
 
The ALL value appears to be essential, but creates substantial complexity.  It is a 
non-value, li ke NULL.  We do not add it li ghtly – adding it touches many aspects of 
the SQL language. As an aside, to be consistent, if the ALL value is a set then the 
other values of that domain must be treated as singleton sets in order to have uniform 
operators on the domain. 
 
Decoration’s interact with aggregate values.  If the aggregate tuple functionally 
defines the decoration column value, then the value appears in the resulting tuple.  
Otherwise the decoration field is NULL.   For example: 
 
 
 
 
 
 
 
And this would produce the sample tuples: 
Demonstrating decorations and ALL  
day nation max(Temp) continent 
25/1/1995 USA 28 North America 
ALL         USA     37 North America 
25/1/1995 ALL         41 NULL 
ALL         ALL         48 NULL 

Table 2.6 

The main concern is that unless nation is present, the continent is not 
functionally specified and so is NULL. 
 
ROLLUP Syntax 
If the application wants only a roll -up or drill -down report, the full cube is overkill .  
It is reasonable to offer the additional function ROLLUP() in addition to CUBE(). 
ROLLUP() produces just the super-aggregates: 

(f1, f2, ..., ALL), 
... 

(f1, ALL, ..., ALL), 
(ALL, ALL, ..., ALL). 

 
Cumulative aggregates, li ke running sum or running average, work especially well 
with ROLLUP() since the answer set is naturally sequential (linear) while the CUBE() 
is naturally  non-linear (multi -dimensional).  Both the ROLLUP() and CUBE() 
must be ordered for the cumulative operators to apply.  Here is an ROLLUP syntax 
example:

• Model.ALL = ALL(Model) = {Chevy, Ford } 
• Year.ALL  = ALL(Year)  = {1990, 1991, 1992} 

• Color.ALL = ALL(Color) = {red, white, blue} 

SELECT  day, nation, MAX(Temp), continent(nation) 
FROM  Weather 
GROUP BY CCUUBBEE  ( Day(Time) AS day, 
             Country(Latitude, Longitude) AS nation 
                  ); 
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2.6 Minimalist Design 
Veteran SQL implementers will be terrified of the ALL value -- li ke NULL, it will 
create many special cases. If the goal is to help report writer and GUI visualization 
software, then it may be simpler to adopt the following approach.  
• Use the NULL value in place of the ALL value. 
• Do not implement the ALL() function. 
• Implement the GROUPING()function to discriminate between NULL and ALL . 
 
In this minimalist design, tools and users can simulate the ALL value as by for 
example: 
 
 
 
 
 
 
 
The global sum will be the tuple: 
(NULL, NULL, NULL, 941, TRUE, TRUE, TRUE) 
 
2.7 Addressing the Data Cube 
We can considers extensions to SQL syntax to easily access the elements of the data 
cube -- making it recursive and allowing aggregates to reference sub-aggregates. 
Our task is to make simple and common things easy. The most common request is for 
percent-of-total as an aggregate function.   In SQL this is computed as two SQL 
statements. 
 
 
 
 
 
 
 
 
 
 
 
 
 

SELECT Manufacturer, Year, Month, Day, Color, Model, 
SUM(price) AS Revenue 

FROM  Sales 
GROUP BY Manufacturer, 
    ROLLUP  Year(Time) AS Year, 
             Month(Time) AS Month, 
            Day(Time) AS Day, 
       CCUUBBEE Color, Model; 

SELECT Model, Year, Color, SUM(sales),  
               GROUPING(Model),   
                    GROUPING(Year),  
                    GROUPING(Color)  
FROM Sales 
GROUP BY CUBE(Model, Year, Color); 

SELECT Model,Year,Color,SUM(Sales),   
       SUM(Sales)/  (SELECT SUM(Sales)  
                       FROM Sales  
                       WHERE Model IN { ‘Ford ’ , ‘Chevy ’ }  
                       AND Year Between 1990 AND 1992  
                       )   
FROM   Sales 
WHERE  Model IN { ‘Ford’ , ‘Chevy’ } 
  AND  Year Between 1990 AND 1992 
GROUP BY CUBE (Model, Year, Color); 
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It seems natural to allow the shorthand syntax to name the global aggregate: 
 
 
 
 
 
 
 
Another common desire is to compute the index of a value -- an indication of how far 
the value is from the expected value.  In a set of N values, one expects each item to 
contribute one Nth to the sum.  So the 1D index of a set of values is: 
   index(vi) = vi / (Σj vj)    
The current approach to selecting an field value from a 2D cube with fields row and 
column would read as: 
  SELECT v  
 FROM cube 
 WHERE row    = :i  
      AND column = :j  
And the simpler syntax with data cube is: 
 cube.v(:i, :j)  
as a shorthand for the above selection expression. With this notation added to the SQL 
programming language, it should be fairly easy to compute super-super-aggregates 
from the base cube. 
 
2.8 Computing the Data Cube & Maintaining cubes 
CUBE generalizes aggregates and GROUP BY, so all the technology for computing 
those results also applies to computing the core of the cube.   The main techniques 
are for roll -ups sort table on the aggregating attributes to use arrays or hashing to 
organize the aggregation columns in memory and to use parallelism to compute 
aggregates (if possible) However, computing the 'ALL' tuples and implementing the 
'ALL'-values is not trivial. 
 
The available aggregation functions are: 
• distributive - COUNT(), MIN(), MAX(), SUM()  
• algebraic - Average, standard deviation  
• holistic - Median, Rank 
Computing a cube with a distributive aggregation function is relatively easy, with an 
algebraic function an efficient solution is still possible.  
 
If a cube relation is stored i.e. materialized, updates are needed. The discussion of the 
aggregation functions was focused on SELECT, not on UPDATE/INSERT/DELETE. 
For example, MAX() is distributive for SELECT and INSERT, but not for DELETE. 
The idea is that orthogonal function hierarchies are specified for SELECT, INSERT 
and DELETE. 
 
2.9 Data Cube Summary 
Data cube is based on the idea of using the ‘ALL’-value for group-by and aggregation. 
CUBT operator is a relational operator to simpli fy aggregation, generalizes aggregates, 
group-by, rollups and cross tabs. It is easy to compute for distributive or algebraic 
functions. 

SELECT  Model, Year, Color   
         SUM(Sales) AS total,  
         SUM(Sales) / total(ALL,ALL,ALL)  
FROM  Sales  
WHERE  Model IN { ‘Ford’ , ‘Chevy’ }  
    AND Year Between 1990 AND 1992  
GROUP BY CUBE(Model, Year, Color);  
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Chapter 3. Materialized Views and their Maintenance 
 
3.1 Introduction 
A view is a special display of data. It is a derived relation defined in terms of base 
relations. It defines a function from a set of base tables to a derived table and is 
typically recomputed every time the view is referenced. 
 
A materialized view is a view whose tuples are actually stored in the database. Then 
view access can be much faster, especially if index structures are built . It can also 
benefit integrity constraint checking and query optimization. People found 
materialized views extremely useful in new type of applications such as data 
warehousing, replication servers, chronicle or data recording system, data 
visualization, and mobile system. 
 
Materialized views act just like a cache. And they suffer the same problem as cache: 
have to be updated when they get dirty, i.e. whenever the underlying base relations are 
modified. This update process is called View Maintenance. The process is normally 
incremental and only changes to a view are compute in response to changes to base 
relations. It is because recomputing a view from scratch is wasteful in most cases.  
 
3.2 Application of Materialized View 
1. Any problem domain that needs Fast Access, Lower CPU and Disk Load 

By defining and materializing results of complex query over data in large size, each 
query can be reduced to a simple lookup on the materialized view. 

 
2. Data Warehousing 

Materialized views provide a framework for collecting information from several 
databases into the warehouse, without copying each database. And queries on the 
warehouse can be answered using the view without accessing remote DBs. 
 

3. Chronicle Systems 
Chronicle is ordered sequence of transactional tuples. It can get very large, even 
beyond any DB’s capacity. Chronicle systems deal with this kind of stream of 
transactional data. Examples are banking, retaili ng and billi ng system. 
 
Materialized views provide a way to answer queries over the chronicle without 
accessing it. They can be defined to compute and store summaries of interest over 
the chroncle. 

 
4. Data Visualization 

Visualization applications display views over the data in a database. Users can 
change the view definition anytime, and the display has to be updated accordingly. 
By materializing a view and incrementally recomputing it as its definition changes, 
the system keeps such application interactive. 
 

5. Mobile System 
When a Personal Digital Assistant (PDA) moves and asks a same query regarding 
its current location and the environment, computing only the change can reduce 
data transmission. 
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6. Integrity Constraint Checking 
Most static integrity constraints can be translate to a view maintenance problem, 
since they can be represented as a set of views such that nonempty means violation. 

 
7. Query Optimization 

Materialized views are not bound to direct lookup only. It is possible to used it 
internally or explicitl y by user to optimize other queries. 

 
3.3 Materialized View Maintenance 
Classification of the View Maintenance problem 
 
1. Information Dimension 

The amount of information available for view maintenance. E.g. 
a) Have access to all base relations 
b) Have access to some base relations 
c) Have access to the materialized view 
d) Have information on integrity constraints and keys 
 

2. Modification Dimension:  
Modification types that the algorithm can handle. E.g. 
a) Insertion to base relations 
b) Deletion from base relations 
c) Update base relations directly 
d) Update base relations as deletions followed by insertions 
e) View definition changes 

 
3. Language Dimension:  

The language set used to define the view. E.g. 
a) Expressed as a Select-Project-Join (SPJ) query 
b) Expressed as some other subset of relation algebra 
c) Expressed SQL or subset of SQL 
d) Involving Duplicates, Aggregation, or Recursion 

 
4. Instance Dimension 

Whether the algorithm work for all data instances and all modification instances. 
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For simplicity, we may view the problem as in the figure below. It shows the problem 
space defined by three of the four dimensions, namely the information, modification, 
and language dimensions.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Main Idea 
 
The main idea is to use the change to the base relations to compute the change to the 
view. So most algorithms treat the view definition as a mathematical formula and 
apply a differentiation step to obtain an expression for the change in the view. 
 
E.g. Base relation link(S, D): link(a, b) is true if there is a link from node a to b.  

View hop(X, Y): hop(c, d) is true if c is connected to d using 2 links 
Definition D: hop(X, Y) = ΠX,Y ( link(X, V) �� V=W link(W,Y) ) 

Change of link: ∆(link) 
Change of hop: ∆(hop) 

 
By mathematically differentiating definition D, we compute ∆(hop) as: 

∆ (hop) = ΠX, Y ( ( ∆ (link)(X, V) ��� V=W    link(W, Y) ) 
∪  ( link(X, V) ��� V=W ∆ (link)(W, Y) ) 
∪  ( ∆ (link)(X, V) ��� V=W ∆ (link)(W, Y) ) ) 

 

Amount of Info 

�����  
 

Integrity Constraints 
 

Other View 
 

Base Relations 
 

Materialized View 

Expressiveness of View 
Definition Language 

Type of Modification 

Insertions 
Deletions 

Updates 
Sets of each 

Group Updates 

Change view definition �  �  �  �  

Conjunctive queries 

Duplicates 

Arithmetic 

Aggregati
on 

Subqueries 

Unio
n 

Chronicle Algebra 

Outer-Joins 

Recursion 

Figure 3.1 The Problem space 
Notes: No relative order on each dimension 

�  �  �  �  
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Using Full Information 
 
If the view maintenance process have access to all the base relations and the 
materialized view, we refer to this information as full information. The focus should 
then be on efficient techniques to maintain views expressed in different languages. 
 
1. Algorithms that can maintain Non-recursive Views 

a) The counting algorithm 
b) Algebraic Differencing 
c) The Ceri-Widom Algorithm 
d) All algorithms that applied to Recursive Views 

 
2. Algorithms that can maintain Outer-Join Views 

a) A algorithm that first user the change of one relation left-outer-join the other 
relation, and the use the result of the previous join over the first relation 
right-outer-join the change to the second relation. 

 
3. Algorithms that can maintain Recursive Views 

a) The DRed (Deletion and Rederivation) Algorithm 
b) The PF (Propagation/Filt ration) Algorithm 
c) The Kuchenhoff Algorithm 
d) The Urpi-Olive Algorithm 

 
Using Partial Information 
 
View may be maintained using only a subset of the underlying relations. We refer to 
this information as partial information. Since a view is not always maintainable using 
only partial information, algorithms should focus on checking whether the view can 
be maintained, and then on how to maintain the view. 
 
1. Using No Infuriation (Query Independent of Update) 

The only thing we can do if no information available is to do nothing. However, 
algorithms are needed to ensure that it is valid to do nothing according to the 
change. 

 
2. Using the Materialized View Only (Self-Maintainable) 

Self-Maintainabilit y w.r.t. Insertion and Deletions for SPJ views are 
a) Usually not self-maintable w.r.t Insertion 
b) Often self-maintainable w.r.t deletions and updates 

 
3. Using the Materialized View and Some Base Relations (Partial-Reference) 

Different problem and different availabilit y result in different algorithm. Normally 
another algorithm is needed even there is only a slight change in the requirement. 
Many algorithms have been proposed to solve different problems. Two interesting 
subprograms are when: 
a) the view and all relations except the modified relation are available 

e.g. Chronicle Views 
b) only the view and the modified relation are available 

e.g. Change-reference Maintainable problem 
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Chapter 4. Selection of views to materialize in a Data 
Warehouse 
 
A data warehouse is a repository of integrated information available for querying and 
analysis. One of the most popular application of a data warehouse is On-line 
Analytical Processing (OLAP). Multidimensional data analysis, as supported by 
OLAP systems, requires the computation of many aggregate functions over large 
amounts of data. To meet the performance demands imposed by these applications, 
virtually all OLAP products resort to some degree of pre-computation of these 
aggregates and materialize the results as views. The more that is pre-computed, the 
faster queries can be answered; however, it is often diff icult to determine which are 
the best aggregates to be pre-computed given a fixed amount of space. Storing the set 
of pre-computed aggregates are said to be materialized. Thus, the problem here is to 
fill available space with pre-computed aggregates in order to minimize the average 
query response time of the system.  
 
4.1 Background 
The set of multidimensional views that summarize measure information in a data 
warehouse with respect to any subset of possible dimension is called data cube. In a 
data cube, some aggregate views can be computed from another aggregate view. For 
example, the aggregate on {ProductId, StoreId} can be used to answer a query on 
either { ProductId} or { StoreId}. This relation between aggregate views can be used to 
place them within a lattice framework as shown in figure 1. Materialized aggregate 
views are vertices of the cube, the following two properties define a lattice L of 
aggregates. 

(a). There exists a partial order ������������������ ! �"#�� !���$�&%(')���+*,'-����./�10)�����2')3���4�576�"
aggregate views u and v, v �98:');<���/=�6��(0?>@'2;�%�3����A�&�1����*B����"#��=@8�*#'-�/ C��./�
results of u by itself. 

(b). There is a base view in the lattice, upon which every view is dependent. The 
base view is the database. 

(c). There is a completely aggregated view “ALL” which can be computed from 
any other view in the lattice. 

 
 
 
 
 
 
 
 
 
In figure 4.1, three dimensions ProductId, 
StoreId and TimeId are represented by P,S and 
T respectively, and an aggregate view is labeled using he names of the attributes it is 
aggregated on. For example,view PT is aggregated on attributes ProductId and TimeId. 
If an edge connects two views, then the higher view can be used to precompute the 
other view in the lattice. For example, there is an edge between ST and T. This means 
that ST can be used to compute T. If ST is not materialized, a query on P has to be 
answered using the base table, PST. 

PST (100) 

PS (60) 
PT (100) 

ST (50) 

P (10) 
S (5) 

T (8) 

ALL (1) 

Figure 4.1: The data cube 
lattice cor responding to the 
schema {ProductId, StoreId, 
TimeId}. The numbers are 
sizes of the view in number of 
tuples.  
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4.2 Problem 
It is desirable to precompute and materialize all the views in a data warehouse in order 
to speed up the average query response time. However, there are two constraints that 
make it impossible to store all the materialized views in a data lattice. 
 

(a). The first constraint is space constraint. Typical data warehouse is huge and 
consists of several tera bytes of data. It is expensive and impossible to store 
all the materiali zed views. 

(b). The second constraint is the update time constraint. Even storage cost is 
cheap enough to hold all of the materialized view in a data warehouse, there 
would not be enough time to update them all . As all materialized view 
depends on the base table, they need to update when the data in base table 
changed. However, typical business that runs data warehouse only has time 
to do update at night when the business is closed. As a result, the limited 
amount of time for update is criti cal for a large amount of materiali zed views. 

 
Therefore, selecting which views to materialize in a limited amount of space and 
under the update time constraint, in order to maximize the average query response 
time of the system is difficult. 
 

4.3 Cost Model 
The cost of answering a query (time of execution) is assumed to be equal to the 
number of tuples in the aggregate used to answer the query. Hence, the querying 
benefit of an aggregate view v is computed by adding up the savings in query cost for 
each view w (including v) over answering it from the base view. That is, instead of 
accessing the base table, we save some cost by accessing the smaller size materialized 
view v for every query w that can be answered by v. For example, v is { P,S}, then w 
is the set {{ P,S},{ P},{ S},{ ALL} } of views. The benefit of querying v instead of w in 
figure 1 is (100-60)*4 = 160. As our goal is to maximize the speed up in query 
response time under space and update time constraint, we consider the benefit per unit 
space of a view instead of only the benefit of a view. 
 
4.4 Existing View Selection Solutions 
Many studies on view selection focused on space constraint. Greedy algorithm is 
widely applied to solve this problem, like BPUS and PBS are shown in figure 2.  
 
 
 
 
 
 
 
 
 
 

Algor ithm BPUS 
WHILE ( SPACE > 0) DO 

w = aggregate with max. benefit per unit 
space in A 

IF (space - |w| > 0 ) THEN 
space = space -|w| 

  S = S ∪w 
 A = A – w 
ELSE  

  space = 0 
(a) 

Algor ithm PBS 
WHILE ( SPACE > 0) DO 

w = smallest(A) 
IF (space - |w| > 0 ) THEN 

space = space -|w| 
S = S ∪w 
A = A - w 

 ELSE  
space = 0  
 

(b) 
Figure 4.2 Greedy algor ithms under size constraint. 
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In BPUS, it constructs a set of view (S) to materialize under the space constraint 
(SPACE), where A is the whole set of views in a data lattice. Starting from an empty 
set (initially S is empty), the aggregate view w with the maximum benefit per unit 
space is selected. The algorithm runs to pick the view with maximum benefit per unit 
space in each round, until the space constraint are met. The benefit  of this algorithm is 
at least 63% of the optimal, which is close to the optimal. The running time is O(kn2), 
where k is the number of selected views and n is the total number of views in a lattice. 
 
Because a lattice of d dimensions has 2^d views and 2̂ (2^d) view sets. n grows 
exponentially with dimensionali ty, the algorithm is unacceptably slow for large 
numbers of dimensions and typical data warehouse has dimension greater than ten. 
 
A large portion of running time spend in this algorithm is the time spent to update the 
benefit per unit space of every view in each selection round. The update process itself 
takes O(n^2) to update the benefit of other views in picking each view to materialize. 
 
Another proposed greedy algorithm applied in solving this problem is PBS. The PBS 
algorithm, unlike BPUS that considers benefit per unit space. Instead, it only 
considers the size of the views that are going to pick. PBS picks views in increasing 
size until the space limit i s reached as shown in figure 2(b). PBS picks the same set of 
views as BPUS provided the lattice is size restricted. In a size restricted lattice, each 
view is at least k+1 times larger than its largest child, where k is the number of its 
child). This rule makes sure the parent of a view is much larger than the child. 
Otherwise, pick by size may not give optimal solution as picking a parent will benefit 
more than child if they have similar size. The time complexity of this algorithm is 
O(nlogn) where n is the number of views exist in the lattice. The running time is 
much faster than BPUS as no update is needed in every iteration. Only time spent on 
sorting the views in the lattice by size is needed, which is much cheaper than BPUS. 
 

4.5 View Selection Conclusion 
In this part of the paper, we have studied two greedy algorithms, BPUS and PBS, in 
solving the view selection problem under the size constraint. Other algorithm exists 
for solving the same problem under update time constraint. In general BPUS works 
well with all kind of data lattice, no special condition needs to hold for the lattice in 
this algorithm. However, the running time O(kn^2) is slow due to exhaustive update 
of benefit during the picking process. Another algorithm, PBS runs O(nlogn), much 
faster than BPUS. However, this algorithm requires the data lattice to be size 
restricted, which may not be the general case in practice.  
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Chapter 5. View management system for Data 
Warehouses 
 
5.1 Introduction 
The standard query operation in Data Warehouses is very expensive.  For example, a 
manager may has interesting to know what is the total sales amount of every 
salesperson, in all different branches of his company, in the last four year.  To 
answer such query with the standard query language, it may take hours to do scanning 
tables and aggregating.  In order to speed up the query processing time, we have to 
pre-compute and materialize of views with aggregate functions.  The problem now is 
that how we can manage those views in order to provide best performance benefits. 
 
There are mainly two kinds of the view selection methods: Static selection of view 
and dynamic selection of view.  We will discuss these two directions of view 
selection in separate section.  For the dynamic selection section, we will mainly 
discuss a dynamic view management system for Data Warehouses called DynaMat.  
 
5.2 Static Selection of View 
The meaning of static is that the system itself cannot find out which set of views have 
to be materialized.  In such case, the date Warehouse administrator has to control the 
amount of redundancy added and specify the space that will be allocated for the 
materialized view.  Also, giving some description on the query pattern is necessary.  
Base on the given information, some algorithms can be used to generate a suggestion 
set of views that can be materialized and hence, provide better performance of OLAP. 
 
This static selection of views however, has several disadvantages.  Firstly, it 
contradicts to the dynamic properties of decision support analysis system.  In a 
decision support system, the query pattern is diff icult to predict because different 
users may be interested in the different trends in different period.  Moreover, as data 
in data Warehouse is changed periodically, say, the headquarter of a company may 
collect the sales date from all branch at night, a static selection of view might be 
quickly become outdated.  This means that the administrator should continually 
monitor the query pattern and periodically re-run the algorithms to update the 
materialized views.  If the data Warehouses system is large and complicated, this 
work is very time consuming. 
 
Another drawback of the static view selection is that the system cannot use the results 
of queries that cannot be answered by the materialized view.  Since there are a lot of 
inter-dependency among a set of OLAP queries, some queries are likely to be 
computable with the results of previous queries operations.  For example, someone 
want to find “ total sales of every season in last year” , another one want to find “ total 
sales in last year” .  The result of second query can be calculated from the result of 
the first query.  This means that we do not have to access the base table at all, but the 
static selection of view does not have such function.  Furthermore, static selection of 
view only considers how to select a view to materialize, it does not consider how to 
refresh those views.  This is also very important because the base data in data 
Warehouse is always changing. 
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5.3 Dynamic View Management System : DynaMat 
 
Features of DynaMat 
DynaMat can dynamicall y materialize the data at multiple levels of granularity in 
order to match the demand.  It also takes the two maintenance constrains, which are 
time to update the view and space to store the view, into consideration.  DynaMat 
unifies the view selection and view maintenance problems under a single framework 
using “goodness” measure to compute the view maintenance plan. 
 
System overview 
There are mainly four parts in DynaMat. 
View Pool is the information repository to 
store the materialized results. 
Fragment Locator  is to determine whether 
or not the already materialized results can 
be used to eff iciently answer the query.   
Directory Index is maintained to supports 
sub-linear search in view pool for finding 
suitable candidate materialized results.  If 
the search cannot find a candidate to 
answer the query, the conventional query 
operation will be used. 
Admission Control Entity is used to test 
the result of query whether or not it is 
beneficial to be stored in the pool. 
 
The system operations can be categorized in two operational phases: online phase and 
update phase.  During online phase, the goal of the system is to answer as many 
queries as possible from the View Pool, because this will be much faster than through 
the conventional method.  At the same time, the new query patterns will be 
monitored and be adapted by the system.   
 
During the update phase, the new data from distributed date sources will be received 
and stored in the data warehouse.  Since the base date is changed, the materialized 
results in the pool will also be refreshed. 
 

The system will act as in two bound cases, one 
is time bound case and the other is space 
bound case.  During the online phase of date 
warehouse, the query results are continually 
added to the pool.  So the size of the pool 
will grow monotonically overtime if the size 
does not reach the space limit .  During the 
update phase, owning to the time constrain W, 
some materialized results may not be 
update-able and will be evicted from the pool.  

This is the time bound case.  In the graph, the local minimums represent the amount 
of materialized date that can be update within W and the local maximums refer the 
pool size just before the update event happened. 

Figure 5.1  

Figure 5.2 
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The space bound case happened when the pool become full .  In such case, some 
replacement policy such as LRU, FIFO will be used.  If the update window W is 
large enough that all the materialized results 
can be update-able, then the content of the 
pool is determined by the replacement policy. 
 
 
View Pool organization 
The results in the view pool can be stored as 
the traditional relational tables.  However, 
that implementation cannot guarantee 
reasonable query performance.  Moreover, 
scanning a large table can be time consuming.  
A better data structure to store the materialized result is Cubetrees.  Cubetrees are 
multidimensional data structures that proved both storage and indexing in a single 
organization.  With such structure, better query performance and space utili zation 
can be achieved. 
 
A multidimensional data ware house is a data repository in which data is organized 
along a set of dimensions S�T(U V�W�X V�Y�X2Z[V�\�]S�T(U V�W�X V�Y�X2Z[V�\�]S�T(U V�W�X V�Y�X2Z[V�\�]S�T(U V�W�X V�Y�X2Z[V�\�] .  Assume the data warehouse workload is a 
collection of Multidimensional Range queries (MR-queries) and each of them can be 
visualized as hyper-plane in the data cube space using a n-dimensional vector ^^ ^^ :   
 

^�T(_ `aW�X `aY�X2Z[X `a\�]^�T(_ `aW�X `aY�X2Z[X `a\�]^�T(_ `aW�X `aY�X2Z[X `a\�]^�T(_ `aW�X `aY�X2Z[X `a\�]

Where ̀abàbàbàb  is a range in the dimension’s V�bV�bV�bV�b  domain and ̀ab`ab`ab`ab  can one of the following: 
1. a full range : `ab`ab`ab`ab ={min( V�bV�bV�bV�b ),max( V�bV�bV�bV�b )}.  This means range between the minimum 

and the maximum values of key V�b$cV�b$cV�b$cV�b$c
2. a single value for for V�bV�bV�bV�b
3. an empty range which represent a dimension that is not present in the query

 
For instance, Let S�T(_ d(e2fS�T(_ d(e2fS�T(_ d(e2fS�T(_ d(e2fgVV VV�hHigjkX�lmjkfme2n-]hHigjkX�lmjkfme2n-]hHigjkX�lmjkfme2n-]hHigjkX�lmjkfme2n-]  where 1=<d(e2fmV�h�igj <=1000 and 1=<lmjkfme2n <=200.  The 
hyper-plane ̂�T(_ o�p�X2U W�X Y�p�p�q ]�̂T(_ o�p�X2U W�X Y�p�p�q ]�̂T(_ o�p�X2U W�X Y�p�p�q ]�̂T(_ o�p�X2U W�X Y�p�p�q ]  corresponds to the SQL query is : 
 
 Select product, store, aggregate_list 
 From F 
 Where product=50 
 Group by product, store 
 
The same notation wil l also be used to represent the materialized results of MR 
queries which is called Multidimensional Range Fragments (MRFs).  DynaMat maps 
each SQL query to one or more MR queries.  Given a MR query, we want to find the 
best set of MRFs in the view pool to answer the query.  In the system, MRFs provide 
a slightly coarser grain of materialization because we hope that single stored fragment 
can be used to answer a new query, and we do not want to try the combination of a lot 
of small fragments to find the result.  Having small fragment will be result in poor 
performance during query execution and updates.  Hence, larger fragments of views 
are preferable. 
 

Figure 5.3 
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Definition of  rr rr covers ̂̂̂̂  : Given a MRF rr rr and a query ^^ ^^ , rr rr  answers ̂̂̂̂  iff  
• for every non-empty ranges ̀ab`ab`ab`ab  of ^^ ^^ , the fragment stores exactly the same range  
• for every empty range ̀̀̀̀sbbbb , the fragment’s corresponding range is either empty 

or spans the whole domain of dimension 
 
When a query is submitted, instead of search 
all the fragments, DynaMat uses Directory 
Index to further prune the search space.  The 
result is a set of indices connected through the 
lattice.  Each node has a dedicated index that 
is used to keep track of all fragments of the 
corresponding view that are stored in the pool.  
In order to find the result of a query q, we 
scan all views in the lattice by using ^^ ^^ .  If it 
contains materialized results f whose hyper-planes cover ^^ ^^ , then result can be found.  
For example: 

• SS SS ={product, store, customer}  
• ^^ ^^ ={ (1,1000),(),Smith} 

 
We first scan the index for view(product,customer) 
using the rectangle{ (1,1000),(Smith,Smith)}.  
The graph right side gives a snapshot of the 
corresponding R-tree implementation for 
view(producti,customer).  The shaded areas are 
the MRFs of the materialized views in the pool.  
Since no fragment is found, based on the 
dependencies defined in the lattice, we also check view(product,store,customer) for 
candidate fragments.  So we then 
using((1,1000),(min(store),max(store)),(Smith,Smith)}, if a fragment is found, we 
collapse the store column and aggregate the measure to compute the final result. 
 
 
Pool Maintenance 
A goodness measure was derived for choosing which of the fragments will be stored 
and which will be discarded.  Each time the DynaMat reaches the space or time 
bounds, it uses the goodness measure for replacing MRFs.  The following shows the 
four criteria to define such a goodness: 

• the time that the fragment was last accessed by system 
   goodness(f) = Tlast_access(f) 
 This will results in a Least Recently Used(LRU) type of replacement policy  
 

• the frequency of access for the fragment 
   goodness(f) = freq(f) 
 This will results in a Least Frequently Used(LFU) type of replacement policy 
 

• the size of the fragment 
   goodness(f) = size(f) 
 This will results in a Smaller-Fragment-First(SFF) type of replacement policy 
 

Figure 5.4 

Figure 5.5 
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• the expected penalty rate of re-computing the fragment if it is evicted 
   goodness(f) = freq(f) * c(f) / size(f) 
    where c(f) is the cost of re-computing f 
 This will results in a Smaller Penalty First(SPF) type of replacement policy  
 
5.4 View Management Conclusion 
In this part of context, we have discussed the two view selection strategies: static and 
dynamic view selection.   For the static strategy, we have shown the drawback.  
For the dynamic view selection, we discussed it with a dynamic view management 
system called Dynamic.  In the following part, we will see more view selection 
algorithms. 
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