
Towards Data Warehouse Design
Franck Ravat

IRIT, Toulouse III University
118, Route de Narbonne

F-31062 Toulouse cedex 04

ravat@irit.fr

Olivier Teste
IRIT, Toulouse III University

118, Route de Narbonne
F-31062 Toulouse cedex 04

teste@irit.fr

Gilles Zurfluh
IRIT, Toulouse III University

118, Route de Narbonne
F-31062 Toulouse cedex 04

zurfluh@irit.fr

ABSTRACT

This paper focuses on data warehouse modelling. The conceptual
model we defined, is based on object concepts extended with
specific concepts like generic classes, temporal classes and
archive classes. The temporal classes are used to store the detailed
evolutions and the archive classes store the summarised data
evolutions. We also provide a flexible concept allowing the
administrator to define historised parts and non-historised parts
into the warehouse schema. Moreover, we introduce constraints
which configure the data warehouse behaviour and these various
parts. To validate our propositions, we describe a prototype
dedicated to the data warehouse design.

Keywords
Conceptual Data Warehouse Model, Temporal Data, Object
Modelling.

1. INTRODUCTION
In order to make long-term managerial decisions, companies have
to exploit very large volumes of data, generally stored in their
operational databases. The exploitation of these data is sometimes
carried out in an empirical way using traditional techniques (SQL
requests, views), and the decision-making process is often
tiresome and does not properly respond to user requests. The data
warehousing can overcome these insufficiencies. A data
warehouse is defined as a "subject-oriented, integrated, non-
volatile, and time variant collection of data in support of
management's decisions" [14].

Our research centre aims to design and to implement a decision
support system in the medical context. This study constitutes an
extension of our works made in the field of the medical
information system design [19]. Now, we work with the French
Social Security. We defined a decisional system architecture in
order to isolate several research topics. Figure 1 depicts this
architecture which is composed of four levels: (1) operational data
sources, (2) integrated global data source, (3) temporal data
warehouse and (4) multidimensional data marts.

(1) Operational data sources are distributed and heterogeneous
(internal databases, partners databases, Web servers…); they store
only the current state of data.

(2) The integrated global data source is modelled in an unique
object-oriented data model. We use an object modelling because
the medical applications handle multimedia data with deep
structures. This modelling can require some federated database
techniques [23] or distributed object-oriented database
mechanisms [22]. It is important to note that the integrated global
data source schema is not necessarily materialised.

(3) The data warehouse is a temporal materialised view over a
global data source. The materialised view approach [10] consists
in extracting the source data and in storing them in the data
warehouse. We choose this approach because it permits to model
data evolutions in the warehouse. Furthermore, a materialised
view querying may be substantially faster than the alternative
approach based on virtual views [27]. This solution is adapted to
our medical context requiring periodic refreshments (CTII). We do
not use a multidimensional model because the multidimensional
model is devoted to analysis (OLAP, Datamining) and our data
warehouse is not directly used for analysis.

(4) In data marts, data is modelled "multidimensionally". A data
mart is built as a materialised view over the temporal data
warehouse. Data are stored in a multidimensional model [2] [11].
They are subject-oriented and they facilitate user analysis. The
information is organised according to the "star model" based on
the two following concepts: "fact" and "dimension".

Data Source 1 Data Source 2 Data Source n. . .

Global Data Source

DATA WAREHOUSE

Data
Mart . . .

• heterogeneous data models
• current data states

(1)

• unique data model
• current data states
• virtual schema integration

(2)

• unique data model
• materialised view
• temporal data

(3)

• multidimensional model
• materialised view

(4)

Architecture Used Concepts

Data
Mart

Data
Mart

Figure 1: Decisional system architecture.

In this paper, we focus on the warehouse conceptual modelling.
The model is based on the object paradigm and allows the
temporal data management. The warehouse administrator can

I This study was partially financed by the CTI-Sud (computing

organism of the French Social Security) located in the Midi-
Pyrénées country and it was supported by the EVOLUTION
research group (http: //www.prism.uvsq.fr/ dataware/ coop/
evolution.html).

define and can configure (with constraints) temporal and non-
temporal parts.

In Section 2, we briefly review related work in the data warehouse
and the temporal database fields. In Section 3, we present our
object-oriented data model for temporal data warehouses.
Section 4 describes concepts permitting to configure a data
warehouse and their different temporal parts. The Section 5
presents a prototype allowing the administrator to define and to
generate a data warehouse.

2. RELATED WORKS
The Stanford University project [27] [12] aims to develop
algorithms related to the integration and the maintenance of
information extracted from heterogeneous and autonomous
sources [13] [17] [31], e.g. the data warehouse is a collection of
materialised relational views derived from data sources. The view
maintenance problem has been studied extensively; see [10] for a
survey. [21] gives incremental view maintenance expressions for
the general case of views with aggregation (count, min, max, sum
and avg). Other works deal with the data warehouse configuration
problem by selecting a set of materialised views to reduce the
view maintenance cost [25] [15] [29]. The most recent work [16]
provides an algorithm that selects optimal update strategies
updating a set of views.

These research works are concentrated on materialised view
maintenance. Moreover, these research works do not deal with the
temporal view problem and they do not integrate explicitly the
time dimension. Nevertheless, [30] investigates the temporal view
maintenance problem in a relational warehouse context.

Our approach focuses on the data warehouse design problem. We
mainly study the data evolution management and its
configuration. We provide a multilevel temporal model (attribute,
class and set of classes) whereas in [30], one temporal level is
considered (tuple are dated with timestamps).

Numerous temporal data models and query languages have been
proposed in the temporal database framework; see [20] [28] for
surveys. Most of the research works have assumed that the
temporal domain is discrete. For example, TEMPOS [8] is an
extensible temporal data model, developed as a part of the
STORM project [1]. Several arguments in favour of using a
discrete temporal domain are made by Snodgrass [24]
(compatibility with human references, possibility of modelling
events which have duration, practicality of implementing the
temporal data model,…); see [9] for a discussion. We chose a
discrete and linear temporal model.

3. OUR DATA WAREHOUSE MODEL
This section introduces our temporal data warehouse model. The
following sections present concepts of our data warehouse model.
Firstly, we explicit the used temporal model. Secondly, we present
the generic class and the link class concepts which allow the
current data storage in the warehouse. Also, we present the
temporal and archive class concepts which allow the data
evolution management (called data historisation). Lastly, we
define the environment concept specifying temporal parts in the
warehouse.

3.1 Temporal Model
The time dimension is very important in the data warehousing
context [6] [14] [30]. Our model integrates the time dimension
and provides several temporal types and operations to facilitate

time manipulations. Our temporal model is inspired by TEMPOS
[8], based on a discrete and linear time model in which the time
line is structured in a multigranular way.

real time

0 1 2 3 4 5 6 7

0 1 2 3

temporal granules

partition 1
(temporal unit)

partition 2
(temporal unit)

disjoint contiguous time intervals

Figure 2: Partition of the time line.

A time unit is a partition of the time line into a set of disjoint
contiguous time intervals where each interval is an atomic
granule.

Definition: We use the following temporal types

- The instant called T denotes a temporal granule defined in a
temporal unit. T = (NT, UT) where NT is a point on the temporal
line and UT is a temporal unit.

- The interval called I denotes a set of instants between two
instant limits. I[TBegin , TEnd[= { T | TBegin ≤ T < TEnd }.

3.2 Data Warehouse Schema
The data warehouse is defined by an object materialised view over
a source schema. A data warehouse schema is characterised by a
collection of classes and a set of constraints.

Definition: A data warehouse is defined by a materialised view
which is characterised by a schema, called SDW. This schema SDW

is defined by (CDW, LDW, ConstraintDW) where

- CDW is a finite set of generic object classes,

- LDW is a finite set of link classes between generic object classes,

- ConstraintDW is a set of constraints which configure the data
warehouse.

The generic object class models the entities extracted from the
source. These instances are built with the extracted source data. A
link class represents the semantic relationships between the
generic object classes. The link modelled by classes permits to
define specific properties on the semantic relationships.

3.3 Current Data Management
In this section, we describe the current data management by the
generic object class concept and the link class concept. When a
data evolution is detected, the generic object class and eventually
the link class are refreshed with the new states.

3.3.1 Generic Object Classes
We introduce the generic object class concept to model, in the
data warehouse, entities extracted from the source. Each generic
object represents an entity and contains the last known entity state
(the entity value during the last extraction).

Definition: A generic object class, called GCi, is defined by (PGCi,
SuperGCi, RGCi, ExtGCi)

- PGCi denotes the class intention. It is a set of properties which
characterises the structure (set of attributes denoted AGCi) and
the behaviour (set of methods denoted MGCi) of the class
instances. Let us consider PGCi = AGCi ∪ MGCi.

- SuperGCi is a list of GCi super classes.

- RGCi is a query over the source schema which populates the
generic object class, and refreshes the generic objects. The
mapping between the generic objects and the source objects is
specified by the administrator through the query RGCi. The query
definition is based on an OQL extension.

- ExtGCi denotes the class extension. It is a set of generic objects
derived from one or several source object(s).

In order to fulfil the data warehouse specificities, PGCi regroups
different kinds of attributes (derived, calculated, specific and
system) and different kinds of methods (derived, specific and
system). A derived attribute is directly derived from a source
attribute (its type and its valuation are the same than the attribute
source). A calculated attribute is a powerful mechanism
allowing the administrator to aggregate data sources (it is obtained
by combining the source attributes with a function or a query
expression). A specific attribute is an added attribute which its
type is explicitly given (this attribute allows the user to add
information in the data warehouse). The system attributes are
TBegin and TEnd which represent respectively the date when the
generic object is created and the date when the generic object is
dead (a generic object is dead if one of the component source
objects is deleted). A derived method is automatically (by the
data warehouse system) derived from the source. The signature
and the body of the source must be analysed and redefined with
data warehouse property names. A specific method is not derived
from the source. It allows the administrator to complete the class
behaviour with new methods. The system methods permit to
handle the attributes and the generic objects.
We represent the generic object classes with the UML class
diagram notations [26]. We extend the UML notations to integrate
the data warehouse specificities (attribute and method typologies).
Each property name is preceded by a specific letter which
indicates the property type. We use 'D_' for the derived properties,
'C_' for the calculated attributes, 'S_' for the specific properties
and 'Y_' for the system properties. Also, the derived attributes are
followed by their source origin and the calculated attributes are
followed by their calculus function.

Example. The figure 3 illustrates one Hospital class, derived from
a source class called Establishment, and one generic object (oid1).
The class intention is composed of two derived attributes (name
and budget), one specific attribute (creation), one calculated
attribute (nb_services), one derived method (dollar_buget) and
two specific methods (euro_budget and age).

derived attribute

calculated attribute

specific attribute

derived method

specific method

system attribute

Generic class

Generic objectoid1 : Hospital

D_name:”Clinique de l’Union”
D_budget:10 000 000 . 00
C_nb_services:25
S_creation:1985
Y_TBegin: 01/01/1999
Y_TEnd: now

Hospital

D_name:Establishment.name
D_ budget: Establishment.total_budget
C_nb_services:count(Establishment.services)
S_creation:integer
Y_TBegin : Instant
Y_TEnd : Instant

D_dollar_budget():(Establishment.dollar():real)
S_euro_budget():real
S_age():integer

derived attribute

calculated attribute

specific attribute

system attribute

Figure 3: Generic class and generic object example.

3.3.2 Link Classes
The relationships between generic objects are described by the
link class concept. This class permits to encapsulate the data and
the behaviour of the relationships.

Definition: A link class GLi, is defined by (PGLi, ExtGLi, τGLi)

- PGLi is a set of properties. Let us consider PGCi = AGCi ∪ MGCi.
where AGCi is a set of attributes and MGCi is a set of methods.
AGCi = { asGLi, atGLi

1,atGLi
2,…,atGLi

t } where asGLi is a source
attribute and ∀ j∈ [1, t], t ≥ 1, atGli

j are the target attributes.

- ExtGLi is a set of links between generic objects.

- τGLi is the link semantic type:
- τGLi = α if it is an association relationship,
- τGLi = χ if it is a composition relationship.

We notice that the inheritance relationship is not described by this
link class concept but it is modelled by SuperGCi. We use the UML
notations [26] to represent all the relationships.

Example. Here, the administrator defines a data warehouse about
the medical practitioners and their activities in hospitals.

Practice

D_town:Practice.city
D_department:Practice.department
D_province:Practice.region

Hospital

D_name:Hospitals.name
D_budget:Hospital.budget
D_town:Hospital.city
D_department:Hospital.department
D_province:Hospital.region

Medical_Discipline

D_name:Discipline.name
D_degree:Discipline.required_degree

professional_address

participation

1

1..*

1..*
0..*

1..*

PrivateClinic PublicHospital

Service

D_name:Services.title

discipline

1..*

1..*

Doctor

D_surname:Practitioner.surname
D_first_name:Practitioner.first_name
D_speciality:Practitioner.speciality
D_birth:Practitioner.birth
S_degree:list(string)
C_prescription:count(Practitioner.prescription)

D_age():(Practitioner.age():integer)
S_qualified_to_do(discipline:string):Boolean

Figure 4: Data Warehouse schema example.

oid1 : Doctor

D_surname : “Dupond”
D_firsrt_name : “Martin”
D_speciality : “general practitioner”
D_birth : 22/02/1949
S_degree : <“doctor of medicine”>
C_prescription : 280
Y_TBegin : 01/01/1999
Y_TEnd : _

oid2 : Practice

D_town : “Toulouse”
D_department : “Haute-Garonne”
D_province : “Midi-Pyrénnées”
Y_TBegin : 01/01/1999
Y_TEnd : _

oid3 : Professional_Address

source : oid1
target : {oid2}
Y_TBegin : 01/01/1999
Y_TEnd : _

generic objects

link object

Figure 5: Generic objects and link object example.

3.4 Data Historisation
We introduce the temporal and archive class concepts in order to
model the data evolutions. Temporal classes store the detailed
evolutions whereas archive classes store non-detailed data
evolutions.

We notice that the archive class can exist if, and only if, the
temporal class exists. This constraint is illustrated in the figure 6
by the symbol '{exists}' between the two aggregation relationships.

Generic Class

Temporal Class Archive Class

0..1 0..1

{exists}

Figure 6: Object Class concepts.

The following sub sections describe the concepts of the temporal
class and the archive class.

3.4.1 Temporal Classes
A temporal object class models detailed evolutions. The temporal
objects represent the past states of the entities (e.g. the detailed
generic object evolutions are storing by temporal objects).

Definition: A temporal class, called TCi, is defined by (PTCi, ϕTCi,
GCi, ExtTCi) where

- PTCi = ATCi ∪ MTCi is a set of properties where ATCi is a set of
attributes and MTCi is a set of methods.

- GCi is the generic class which TCi stores value evolutions.

- ϕTCi called temporal filter is a function between AGCi and ATCi.
The administrator uses the temporal filter to indicate the set of
attributes which the value evolutions must be stored.

- ExtTCi is a set of temporal objects. It denotes the class extension.

ATCi = ϕTCi(GCi) ∪ YATCi where ϕTCi(GCi) represents the GCi

class attributes which the evolutions must be stored and YATCi is a
set of system attributes. YATCi = { TBegin , TNum} where TBegin is a
system attribute which represents the time when the temporal
object was created and TNum is the temporal object numerous.

Example. The administrator creates a temporal class T_Hospital
which stores the Hospital generic object class evolutions. The
administrator wants to keep only the budget attribute evolutions.
He defines the temporal class by defining its temporal filter
composed of the mapping between the budget attribute of the
generic class and the past_budget attribute of the temporal class.

In temporal objects, the Y_TEnd attribute is not present because
for each generic object, its temporal objects are ordered, and the
time intervals are disjoined and contiguous. Y_numerous attribute
indicates the numerous of the temporal objects.

oid1 : Hospital

D_name:”Clinique de l’Union”
D_budget:10 000 000 . 00
D_town:”Toulouse”
D_department:”Haute-Garonne”
D_province:”Midi-Pyrénées”
Y_TBegin: 01/01/1999
Y_TEnd: _

oid3 : T_Hospital

D_past_budget:8 000 000 . 00
Y_TBegin: 01/01/1998
Y_numerous:2

oid2 : T_Hospital

D_past_budget:7 000 000 . 00
Y_TBegin: 01/01/1997
Y_numerous:1

generic object

temporal
objects

Hospital T_Hospital
0..*

instance instance
{ordered}

generic class

temporal
class

Class Level :

Instance Level :

Figure 7: Example of generic and temporal objects.

3.4.2 Archive Classes
We introduce the archive class concept in order to model the
temporal object aggregation. This concept allows the
administrator to store non-detailed information about the object

evolutions. Some temporal objects can be aggregated in an
archive object and these aggregated temporal objects are deleted.

Definition: An archive class, called ACi, is defined by (PACi,
ExtACi, GCi, ψACi) where

- PACi = AACi ∪ MACi is a set of properties where AACi is a set of
attributes and MACi is a set of methods.

- GCi is the generic class which ACi stores the aggregated
evolutions.

- ψACi called archive filter, is a function between ATCi x ℑ and
AACi where ℑ is a set of aggregation functions | ℑ = {sum, max,
min, avg, last, first, count, conc }.

- ExtACi is a set of archive objects. It denotes the class extension.

AACi = ψACi(GCi) ∪ YAACi where ψACi(GCi) is a set of attributes
which the evolutions must be stored and YAACi is a set of system
attributes.

Example. In the previous example, the administrator created the
temporal class called T_Hospital. Here, the administrator decides
to specify a new class, called A_Hospital which stores aggregated
temporal data. The archive filter is defined from the attributes of
the temporal class. He defines the following archive filter.

ψA_Hospital : A_Hospital.Y_TBegin = first(T_Hospital.Y_TBegin)
and A_Hospital.D_old_budget = avg(T_Hospital.D_past_budget).

Hospital:oid1

D_name:”Clinique de l’Union”
D_budget:10 000 000 . 00
D_town:”Toulouse”
D_department:”Haute-Garonne”
D_province:”Midi-Pyrénées”
Y_TBegin: 01/01/1999
Y_TEnd: _

oid6 : T_Hospital

D_last_budget:8 000 000 . 00
Y_TBegin: 01/01/1998
Y_numerous:4

oid5 : T_Hospital

D_last_budget:7 000 000 . 00
Y_TBegin: 01/01/1997
Y_numerous:3

generic object

temporal object

oid4 : A_Hospital

D_budget:5 500 000 . 00
Y_TBegin: 01/01/1995
Y_quantity:2

archive object

oid3 : T_Hospital

D_last_budget:6 000 000 . 00
Y_TBegin: 01/01/1996
Y_numerous:2

oid2 : T_Hospital

D_last_budget:5 000 000 . 00
Y_TBegin: 01/01/1995
Y_numerous:1

destroyed
temporal objects

Hospital T_HospitalA_Hospital
0..*0..1

archive class generic class temporal classClass Level :

Instance Level :

A
G

G
R

E
G

A
TI

O
N

Figure 8: Example of generic, temporal and archive objects.

3.5 Environment
The decision support requires, some components of which the
evolutions are kept, and some components which only the last
value are stored in the data warehouse. Thus, we introduce the
environment concept allowing the administrator to define several
"historised" parts in the data warehouse. The environment concept
is the unique concept for the warehouse data "historisation". Our
environment concept is inspired by the database version concepts
[5], but an environment only concerns a part of the data
warehouse and not necessarily the complete data warehouse.

Definition: An environment Envi is defined by (CEnvi, LEnvi,
ConstraintEnvi) where

- CEnvi = {CEnvi
1, C

Envi
2,…,CEnvi

ni} is a set of generic object classes
and their component classes (temporal classes and archive
classes), CEnvi⊆ CDW.

- LEnvi = {LEnvi
1, LEnvi

2,…,LEnvi
mi} is a set of links between the

generic object classes of CEnvi, LEnvi⊆ LDW.

- ConstraintEnvi is a set of constraints related to the environment
configuration.

In our model,

- in the environment, the evolutions are stored by generic classes
composed of temporal classes and archive classes,

- outside the environment, only the last extracted values are
stored by generic classes.

The environment is the unique concept allowing the administrator
to define historised parts (where data evolutions are stored) in the
warehouse. Our model integrates several temporal granularities or
levels: set of classes level, class level and attribute level.

• In the set of classes level, the environment is a conceptual graph
where the nodes represent the generic object classes (which their
evolutions are modelled with their respective temporal and
archive classes) and the links represent the semantic links
(between the generic object classes),

• In the class level, the environment is composed of one generic
class and its component temporal class,

• In the attribute level, the environment is composed of one
generic object class, one temporal class and its temporal filter
defining a subset of attributes (which the evolutions are stored).

Practice

D_town:Practice.city
D_department:Practice.department
D_province:Practice.region

Hospital

D_name:Hospitals.name
D_budget:Hospital.budget
D_town:Hospital.city
D_department:Hospital.department
D_province:Hospital.region

Medical_Discipline

D_name:Discipline.name
D_degree:Discipline.required_degree

professional_address

participation

1

1..*

1..*

0..*

1..*

PrivateClinic PublicHospital

Service

 D_name:Services.title

discipline

1..*

1..*

T_Service
past_name:Service.D_name
Y_TBegin:Instant

A_Service
old_name:first(T_Service.past_name)
Y_TBegin:first(T_Service.Y_TBegin)

0..*

0..1
T_Hospital
past_budget:Hospital.D_budget
Y_TBegin:Hospital.Y_TBegin

A_Hospital
old_budget:avg(T_Hospital.past_budget)
Y_TBegin:first(T_Hospital.Y_TBegin)

0..1

0..*

Doctor

D_surname:Practitioner.surname
D_first_name:Practitioner.first_name
D_speciality:Practitioner.speciality
D_birth:Practitioner.birth
S_degree:list(string)
C_prescription:count(Practitioner.prescription)

D_age():(Practitioner.age():integer)
S_qualified_to_do(discipline:string):Boolean

Hospital_Environment

Figure 9: Data Warehouse Schema Example.
Example. The figure 9 illustrates a warehouse schema. In order to
store the hospital evolutions and the service evolutions, the
administrator creates an environment containing two generic
object classes: Hospital and Service, and their respective temporal

classes (T_Hospital and T_Service) and archive classes
(A_Hospital and A_Service).

The T_Hospital temporal class is defined by a temporal
filter, ϕT_Hospital : T_Hospital.Y_TBegin=Hospital.Y_Tbegin
and T_Hospital.past_budget=Hospital.D_budget.
The A_Hospital is defined by an archive filter, ψA_Hospital:
A_Hospital.D_old_budget = avg(T_Hospital.past_budget) and
A_Hospital.Y_Tbegin = first(T_Hospital.Y_TBegin).

We introduce a specific representation for the environment
concept. The environment called Hospital_Environment is
represented by a double rectangle which regroups the classes
belonging to them.

3.6 Concluding Remarks
The section 3 presented our conceptual model for data
warehouses. We chose a flexible approach; the administrator can
define historised parts (environments) and non-historised parts in
a data warehouse. In a non-historised part, the entity current state
is only stored. In an environment, the entities are stored by generic
object classes, temporal classes (detailed evolutions) and archive
classes (non-detailed evolutions). With the unique environment
concept, the administrator can use the appropriate level (set of
classes, class or attribute) to store only the relevant data
evolutions.

4. DATA WAREHOUSE CONFIGURATION
We provide a set of constraints allowing the administrator to
configure the data warehouse behaviour. We distinguish two
constraint categories:

- the warehouse constraints (ConstraintDW) which are used to
configure objects of all the warehouse's classes,

- the environment constraints (ConstraintEnvi) which are used to
configure objects of all the environment's classes.

We note that these constraints do not deal with the syntactic and
semantic integrity constraints [18] of the data warehouse model as
well as the process management.

The following sections present these configuration constraints.
Firstly, we briefly describe the configuration language. Secondly,
we present the global data warehouse configuration. Lastly, we
explicit the environment configurations.

4.1 Configuration Language
Here we describe how the administrator defines constraints over
the data warehouse or over an environment. These constraints use
intensively the time dimension. Then, we give an overview about
the time manipulations integrated by the warehouse model.

4.1.1 Constraint definition
Our approach is based on the Event/Condition/Action paradigm
[7]. A constraint is represented by the following command

<constraint_definition> ::= create constraint <constraint_name>
on <range_level>
when <events>
[if <conditions>]
then <actions>
[with priority <number>] ;

- The constraint_name clause defines the name of the constraint.

- The range_level clause defines the level (data warehouse or
environment).

! If a constraint rule R is defined at the warehouse level
then R∈ ConstraintDW.

! If R is defined at the environment level (called Envi)
then R∈ ConstraintEnvi.

- Constraints are triggered by the events clause. We use two kinds
of events: temporal and method invocation events.

- The optional conditions clause is a Boolean expression or a
query which returns a set of objects.

- The action clause specifies a block of actions to be executed. If
the condition is a query, the action is applied on the query result.

- The priority clause specify an order between the rules.

4.1.2 Time Manipulations
In the data warehouse, the time is based on a discrete and linear
time model which integrates the temporal types: Instant and
Interval (see section 3.1).

Our configuration language also integrates a set of operations over
the three temporal types. In particular, our model supports the
Allen operators [3] which allow the manipulation of the Interval
type. We extend these operations to combine Instant and Interval
manipulations. We use the following syntax, OP1 operator OP2 to
handle the temporal types. For example, Interval(Instant(12,
year), Instant(20, year)) after Instant(10, year) returns true.

4.2 The data warehouse level: ConstraintDW

The data warehouse is configured by a set of constraints which
have two roles on data warehouses. The first role is related to the
refresh process. The second role is the configuration of the generic
object management.

4.2.1 Refresh process configuration
• First extraction configuration
The first extraction populates the data warehouse initially. The
administrator can specify the date (instant) of this first extraction
(by default, the initial extraction is realised immediately after the
data warehouse schema generation).

Example. For example, the date of the first extraction is midnight.

create constraint FIRST_EXTRACT on warehouse
when Instant(NOW, second) = Instant(‘01-01-1999 00:00:00’,
second)
then self.refresh() ;

NOW denotes the present, and self represents the data warehouse
because the range clause is "on warehouse".

• Refresh process configuration
The refresh process permits to update the data warehouse; each
source object modification is propagated in the data warehouse.
The administrator can specify constraints about these periodic
extractions. We choose a periodic refreshment, because our
application context does not need an immediate refresh process.

Example. The administrator can define the refresh period. Here,
the data warehouse is refreshed monthly. The lastExtractInstant
operation returns the date of the previous extraction.

create constraint REFRESH_PERIOD on warehouse
when Duration(self.lastExtractInstant(month), Instant(NOW,
month), month)) = Duration(1, month)
then self.refresh() ;

4.2.2 Generic object management configuration
When one of the component source objects of a generic object is
deleted, this generic object is dead. A dead generic object may be
deleted too or may be stored in the warehouse. The administrator
can specify if the data warehouse keeps the dead generic objects
and he can specify a temporal threshold about this preserving.

Example. Here the administrator defines a threshold of 2 years.

create constraint DEAD_STORAGE on warehouse
when self.refresh()
if select o

from c in self.classes, o in c.extension
where Duration(o.TEnd, NOW, year) > Duration(2, year)

then o.delete() ;

Here, the administrator configures the data warehouse by
specifying a request. The request result returns a set of dead
generic objects. For each dead generic object returned, if it is
beyond the temporal threshold, then it is deleted.

4.3 The environment level: ConstraintEnvi

These constraints allow the specialisation of the environments and
permit to configure the data evolution management.

4.3.1 Environment specialisation
ConstraintDW permits to configure the warehouse. These global
configurations can be restricted on each environment by
ConstraintEnvi.

• Refresh process specialisation
The administrator can only restrict the refresh process. He can
define a finer time unit which reduces the refresh period. If the
data warehouse is refreshed monthly, an environment can reduce
the refresh period to be refreshed daily.

• Generic object management specialisation
The administrator can specialise the generic object management.
If the data warehouse stores dead objects two years, the
administrator can extend an environment to store the generic
objects during four years.

4.3.2 Data evolution configuration
In an environment, temporal and archive classes store generic
object evolutions. The administrator can configure the
environment to specify the data evolution storage (constraints
about the temporal and archive object management).

The administrator can specify thresholds (numeric and/or
temporal thresholds) which limit the temporal object storage.
Also, he can choose to aggregate or to delete the temporal objects
which go beyond these thresholds.

Example. The administrator defines a numeric threshold which
limits the temporal object storage; only two temporal objects are
kept. When three temporal objects are described, the data
warehouse system aggregates (archives) the oldest temporal
object in an archive object.

create constraint NUMERIC_THRESHOLD on environment
Hospital_Environment when self.refresh
if select OT

from C in self.classes, OG in C.extension, OT in OG.history
where OT.numerous() > 2

then OG.Archive.archive(OT) ;

5. IMPLEMENTATION
In this section, we briefly describe a prototype allowing the
administrator to define and generate warehouses in an OODBMS
(object-oriented database management system). This prototype,
called WarGen (Warehouse Generator [4]), allows the
administrator to build data warehouses. WarGen is based on two
main modules: a graphical interface and an automatic warehouse
generator.

Firstly, the interface displays a graphical representation of the
source schema. Secondly, the administrator defines graphically,
interactively and incrementally a data warehouse schema. Thirdly,
the generator creates automatically the data warehouse according
to the graphical warehouse definition. The data warehouse
classes, the first extraction which populates the data warehouse
and the refresh process are generated automatically.

GRAPHICAL
INTERFACE

Source Administrator

AUTOMATIC
GENERATOR

Meta-Data
Meta-Schema

EXTRACTOR

Data Warehouse
schema

data

WarGen

Figure 10: Prototype Architecture.
The administrator defines the data warehouse schema by selecting
graphically source elements which are relevant for the decision
support. The administrator defines,

- the generic object classes derived from the source schema,

- the environments,

- the temporal and archive filters.

The WarGen interface is based on the formalism we defined in
this paper. For example, in figure 11, the warehouse schema is
composed of generic object classes, of semantic links, of derived
attributes, of specific attributes and of an environment.

Our goal is to facilitate the administrator task. So, this tool aims to
limit the administrator inputs. In figure 11, the administrator do
not add the system attributes in the class definitions because they
are automatically added by the tool. In the same way, the
administrator does not explicitly specify the temporal classes and
the archive classes of the environment because they are
automatically added according to the filters. Moreover, we offer a
graphical definition of the warehouse schema (selection of an
element in the source window; a projection and/or a selection
operation and a copy in the warehouse window). Our tool
facilitates the warehouse schema display:

- We limit the displayed elements (the system attributes, the
temporal and archives classes are not displayed)

- For each class, the administrator can display its attributes and/or
its methods

- The administrator can display or not the composition hierarchy
and the inheritance hierarchy.

- A specific formalism is used to represent attributes belonging to
a temporal filter and an archive filter. The symbol ' ' defines
an attribute belonging to a temporal filter and the symbol ' '
defines an attribute belonging to an archive filter.

Our WarGen prototype is operational. The WarGen source code
represents approximately 4400 lines of Java code (Jdk 1.1.6). The
warehouses are generated in the O2 (4.6 version) OODBMS.

Figure 11: Example of a Data Warehouse Schema.

6. CONCLUSION
In this paper, we present a solution to design data warehouses in a
medical context. Especially, we define a conceptual data

warehouse model. This model integrates classical concepts (like
object, class, semantic link) and specific concepts. Firstly, we
extend the properties definition (specific, derived, calculated, or
system properties). Secondly, we define concepts to model data

evolution. In fact, a data warehouse schema is composed of
"historised" parts and "non-historised" parts. This latter is
composed of generic object classes representing the last value of
an entity. An "historised" part is modelled by an environment.
The administrator can use three temporal levels with the
environment unique concept : set of classes, class and attribute. In
an environment the data evolution is modelled by generic classes,
temporal classes (to store detailed state evolutions of the entities)
and archive classes (to store aggregated state of the entities). The
latter allows the warehouse system to summarise detailed
evolutions of the generic objects.

Also, we presented a set of constraints which allows the
administrator to configure the data warehouse and the
environment behaviours (first extraction, refresh process,
temporal and generic object management).

Our solution is implemented in a prototype. Further research
works are required to extend our WarGen prototype [4] in order to
integrate a graphic rule language which allows a casual
administrator to specify constraints on environments. Also, we
plan to provide a data warehouse design method which must be
composed of a model (with concepts and constraints related to the
warehouse configuration, to the semantic and syntactic integrity,
to the process control and to the administrator help), as well as a
complete process and a tool.

7. REFERENCES
[1] M. Adiba, "STORM Structural and Temporal Object-

Oriented Multimedia database system", BDA'95, Nancy
(France), 1995.

[2] R. Agrawal, A. Gupta, A. Sarawagi, "Modeling
Multidimensional Databases", ICDE'97.

[3] J. Allen, "Maintaining Knowledge About Temporal
Intervals", ACM communications 26(11), pp.832-843, 1983.

[4] F. Bret, O. Teste, "Construction Graphique d'Entrepôts et de
Magasins de Données", INFORSID'99, La Garde (Fr), 1999.

[5] W. Cellary, G. Jomier, "Consistency of versions in object-
oriented databases", VLDB'90, Brisbane (Australia), 1990.

[6] S. Chaudhuri, U. Dayal, "An Overview of Data
Warehousing and OLAP Technology", ACM SIGMOD
Record, 26(1):65-74, 1997.

[7] U. Dayal and al., "The HiPAC Project: Combining Active
Databases and Timing Constraints", ACM SIGMOD
Record, 17(3), Chicago (Illinois, USA), 1988.

[8] M. Dumas, M.C. Fauvet, P.C. Scholl, "Handling temporal
grouping and pattern-matching queries in a temporal object
model", CIKM'98, Washington D.C. (USA), 1998.

[9] I.A. Goralwalla, Y. Leontiev, M.T. Özsu, D. Szafron,
"Modeling Temporal Primitives: Back to Basics", CIKM'97,
pp.24-31, Las Vegas (USA), 1997.

[10] A. Gupta, I.S. Mumick, "Maintenance of Materialized
Views: Problems, Techniques, and Applications", IEEE
Data Engineering Bulletin, 1995.

[11] M. Gyssen, L.V.S. Lakshmanan, "A Foundation for Multi-
Dimensional Databases", VLDB'97, Athens (Greece), 1997.

[12] J. Hammer, H. Garcia-Molina, J. Widom, J.W. Labio, Y.
Zhuge, "The Stanford Data Warehousing Project", IEEE
Data Engineering Bulletin, 18(2):41-48, June 1995.

[13] N. Hyun, "Multiple-View Self-Maintenance in Data
Warehousing Environments", VLDB'97, Athens, 1997.

[14] W.H Inmon, "Building the Data Warehouse", Second
Edition, Wiley Comp., ISBN n°0471-14161-5, USA, 1996.

[15] W.J. Labio, Y. Zhuge, J.L. Wiener, H. Gupta, H. Garcia-
Molina, J. Widom, "The WHIPS Prototype for Data
Warehouse Creation and Maintenance", ACM SIGMOD
Record, 1997.

[16] W.J. Labio, R. Yerneni, H. Garcia-Molina, "Shrinking the
Warehouse Update Window", ACM SIGMOD Record,
Philadelphia (USA), 1999.

[17] W.J. Labio, H. Garci-molina, "Efficient Snapshot
Differential Algorithms for Data Warehousing", VLDB'96,
Mumbai (Bombay, India), 1996.

[18] A. Lapujade, "Constraints, rules and modelisation in a meta-
CASE tool", SEKE'95, Rockville (USA), 1995.

[19] A. Lapujade, F. Ravat, "Conception de systèmes
d'information multimédia répartie : Application au milieu
hospitalier", INFORSID'97, Toulouse (France), 1997.

[20] G. Özsoyoglu, R. Snodgrass, "Temporal and real-time
databases: A survey", IEEE Transactions on Knowledge and
Data Engineering, 7(4):513-532, 1995.

[21] D. Quass, "Maintenance Expressions for Views with
Aggregation", ACM Workshop on Materialized Views:
Techniques and Applications, 1996.

[22] F. Ravat, G. Zurfluh, "Class partitioning", Journal of
Computing and Information, vol. 1, n°2. -Special Issue: 7th

Int. Conf. on Computing and Information, ICCI'95,
Peterborough (Canada)- Nov. 1995.

[23] J. Samos, F. Saltor, J. Sistrac, A. Bardés, "Database
Architecture for Data Warehousing: An evolutionary
Approach", DEXA'98, Vienna (Austria), 1998.

[24] R.T. Snodgrass, "Temporal Databases", In Theories and
Methods of Spatio-Temporal Reasoning in Geographic
Space, pp.22-64, Springer Verlag, LNCS 639, 1992.

[25] D. Theodoratos, T. Sellis, "Data Warehouse Schema and
Instance Design", ER'98, Singapore, 1998.

[26] "OMG Unified Modeling Language Specification", Version
1.3 alpha R5, available at http://www.rational.com, 1999.

[27] J. Widom, "Research problems in data warehousing",
CIKM'95, 1995.

[28] Y. Wu, S. Jajodia, X.S. Wang, "Temporal Database
Bibliography Update", LNC in Computer Science, Springer
Verlag, ISBN 3-540-64519-5, 1998.

[29] J. Yang, K. Karlapalem, Q. Li, "Algorithms for Materialized
View Design in Data Warehousing Environment",
VLDB'97, Athens (Greece), 1997.

[30] J. Yang, J. Widom, "Maintaining Temporal Views over
Non-Temporal Information Sources For Data
Warehousing", EDBT'98, Valencia (Spain), 1998.

[31] Y. Zhuge, H. Garcia-Molina, J. Hammer, J. Widom, "View
Maintenance in a Warehousing Environment", ACM
SIGMOD Record, San Jose (California, USA), 1995.

