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ABSTRACT. This paper presents some highlights about the concept of multidimensional database
and On-Line Analytical Processing (OLAP), a technology used in the context of decision sup-
port. It mainly focuses on multidimensional data models and manipulations. We propose both
an inventory and a classification of the elementary operations underlying OLAP treatments.
We describe several typical complex manipulations based on these elementary operations.
Throughout the paper, we present the informal concepts stemming from users’ needs and the
formal proposals of research works. Hence it provides an entry point in the domain of OLAP
modeling and querying.

RÉSUMÉ. Cet article présente un aperçu des concepts de bases de données multidimensionnelles
et d’analyse en ligne de données (OLAP), utilisés dans le contexte de l’aide à la décision. Il
aborde principalement les modèles de données multidimensionnels et la manipulation de don-
nées multidimensionnelles. Nous proposons à la fois un inventaire et une classification des
opérations élémentaires à la base des traitements OLAP. Nous décrivons quelques manipula-
tions complexes typiques utilisant ces opérations élémentaires. L’article est organisé de manière
à présenter les concepts informels provenant des besoins des utilisateurs et les contreparties
académiques élaborées en réponse à ces besoins. Il constitue ainsi un point d’entrée dans le
domaine de la modélisation et de l’interrogation pour l’analyse en ligne de données.

KEYWORDS: Multidimensional Databases. On-Line Analytical Processing (OLAP). Data Mod-
els. Query Languages.
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1. Introduction

Nowadays, the use of commercial databases oversteps its initial goal of managing
large amounts of information according to On-Line Transactional Processing (OLTP).
They become more and more involved in decision support applications, that are by na-
ture semi-automatic. The processings involved are still interactive and concurrent, but
they are less numerous, more complex, and they concern the exploration of amounts of
heterogeneous data far greater in size. For example, one may want to use spreadsheet-
like analysis facilities to analyze terabytes of historical information [COD 93, CHA 97].
This evolution influenced the way information and treatments are considered, and gave
rise to the concepts of Data Warehouses and On-Line Analytical Processing.

A data warehouse is a repository of information that gathers data having different
structures and coming from different sources (e.g, RDBMS, flat files). Its role is to
centralize these data in order to provide a global, directly exploitable homogeneous
representation [WID 95]. Between the data warehouse and the different front-ends
used for analytical purposes (e.g., spreadsheet, graphical interface), there is a category
of decision support treatments. E.F. Codd [COD 93] proposed an informal characte-
rization that unifies these treatments, and called them On-Line Analytical Processing
(OLAP). These treatments respect the semi-automatic nature of decision support and
answer the needs of user-analysts by allowing interactive manipulations. Thus, para-
phrasing Codd, Agrawal et al. [AGR 97] describe these manipulations as the possibili-
ties to summarize, consolidate, view and synthesize the user-analyst view of informa-
tion. This view corresponds to data structured according to several dimensions, that
represent various notions such as time, location, sales result or product code. This is
referred to as multidimensional data model and treatments [CHA 97], and gave rise to
the concept of the multidimensional database to denote the database technology that
supports these treatments.

OLAP, data warehouses and multidimensional databases are still emerging fields.
As noted by [SHO 97], the terms used for OLAP operations are descriptive rather
than formal, and can have multiple interpretations. Definitions are often imprecise. To
provide a better understanding of this terminology we propose in this paper a state-
of-the-art of multidimensional database logical models and query languages. This re-
search area is very recent, and several works have appeared, but no commonly agreed
framework has emerged. Hence, we structure our presentation in the following way:
we start from users’ needs in term of modeling, elementary operations and querying.
For each of these aspects, we informally describe the concepts and identify the pro-
blems, and we present the proposed solutions for dealing with them. We illustrate
the use of the proposed formal languages on several typical OLAP queries, and we
conclude by discussing the contributions of the proposals. Our presentation is ins-
pired by several works describing the needs of user-analysts, or describing OLAP
systems [COD 93, PEN 98, FIN 95, PIL 95], and on general-purpose research articles
[CHA 97, SHO 97].
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The paper is organized as follows: Section 2 describes the user-analyst view of data
and informally presents the multidimensional modeling. Section 3 concentrates on
the elementary operations needed in OLAP systems. Section 4 presents some typical
OLAP queries and how they can be expressed in the formal languages that have been
proposed. Section 5 concludes.

This work synthesizes the state of the art of [MAR 98]. The proposals mentio-
ned here have been chosen for their representative characters and their specificities in
OLAP modeling and querying. Note that some aspects of these works were simpli-
fied to allow an homogeneous and concise presentation. Our aim is not to provide a
detailed comparison of the different proposals, which would be beyond the scope of
this paper. Our presentation constitutes an entry point into the domain, which may be
further explored by referring to the original papers. During this presentation, we give
some seemingly consensual definitions, or when needed our own definitions. In the
following sections, it is assumed that the reader is familiar with relational modeling
and query languages [ABI 95].

2. Modeling multidimensional databases

In this section we describe the two main specificities underlying the perception of
the information according to the user-analyst:

– the multidimensional nature of information, and

– the representation of information at different levels of detail.

For each of these categories, we present the typical way of modeling the informa-
tion.

2.1. The multidimensional nature

2.1.1. User’s needs

The effectiveness of analysis based on OLAP is related to the ability to des-
cribe and manipulate data under a form close to the vision of the analyst [CHA 97,
CAB 97]. The simple relational modeling becomes inappropriate in the context of
multidimensional data. The intuition underlying this multidimensional modeling is
to consider a multidimensional data as a point in a multidimensional space. In this
context, [CAB 97] suggests defining dimension as a linguistic category used to cha-
racterize the structure of data according to a business perspective.

Consider the relation depicted in Figure 1, that represents the 1996 part sales in
four regions. Several linguistic categories can be found in these data, each corres-
ponding to a relational attribute (column name): the parts dimension, the regions di-
mension, and the amounts dimension. Hence these data can be represented in more
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convenient forms; e.g., as points in the two-dimensional space ���������
	��
����������� , that
are associated with the value ������������� as depicted on the cross-tab of Figure 2.

sales 1996 parts regions amounts
nuts east 50
nuts west 60
nuts south 40
bolts east 70
bolts north 40

screws west 50
screws south 50
screws north 60

Figure 1. The relation sales 1996

To construct the cross-tab representation of the relation sales 1996, we note that
tuples are separated into row names, column names and values at the intersection of
rows and columns. It is to be noticed that a table allows to represent every combination
of values chosen as row names and column names. However, some combinations may
not be known (e.g., screw sales in the east), and a way to represent this incompleteness
has to be found (e.g., a blank square in Figure 2).

sales 1996 east west south north

nuts 50 60 40
bolts 70 40
screws 50 50 60

Figure 2. The 2-dimensional table sales 1996

Because of its multidimensional structure, the cube metaphor has emerged to ge-
neralize this view of data 1. Figure 3 shows a cube named �������
� based on a typical
example in the OLAP literature. We can consider it as the extension of the table of
Figure 2 to the year dimension. The examples of figure 3 and Figure 2 will be used as
running examples in our presentation.

A cube is made of elements called cells, each of which contains one or several
values called measures. A cell’s location is identified by (possibly labeled) axes. Each
axis of the cube corresponds to a dimension, and is graduated by values called mem-
bers. The location of a cell is given by one graduation on each axis (i.e., a member

�
. In the literature, the terms cube, hypercube et multidimensional table are often used inter-

changeably. We propose in this section to relate the terms “cube” and “table” to the represen-
tation of information. “Table” will be used for two-dimensional representations, while “cube”
will be used for three-dimensional representations. The term “hypercube” will be used to refer
to structures having more than three dimensions.
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Figure 3. The cube sales

in each dimension), and is called a reference. Hence a reference identifies in a unique
manner a cell of a cube, which assumes the existence of a functional dependency bet-
ween cell references and contents.

2.1.2. Formal proposals

The formal approaches proposed to model the multidimensional nature of data-
bases used to support OLAP treatments can be divided into three main categories:

– models of tabular (two-dimensional) databases [GYS 96, HAC 97a],

– full multidimensional (hypercubes) models [AGR 96, AGR 97, HAC 97c,
HAC 97b],

– multidimensional models based on relations (in the sense of the relational mo-
del) [LI 96, GYS 97],

Next we give one representative example for each category.

2.1.2.1. Tabular databases

The model we detail here is that of [GYS 96], where data are structured under the
form of two-dimensional matrices. The model of [HAC 97a] is also a tabular one, but
the relative positions of cells is not taken into account.

Let � be a set of symbols containing a particular constant � for describing null
values (inapplicable or unknown).
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In that model, a cell reference is noted ����� �����
	 where �
� � is the cube name, ���
is a function name and ����� ��� . The cell contents � is a symbol from � , and thus a
cell is noted � � � �����
	�� � .

Let � ������������������� and � ��������������� � � be two initial segments of � . In that
model, a cube � is a function � � ranging over � whose domain is � 	 � . � and
� represent respectively the number of rows and the number of columns of � , and
�!�"� ���#�$	%��� ��& ���������'���$(#��� �)& �*�������'� �+( is the information contained at the intersection
of row � with column � . For a cube � with � rows and � columns, each �,�"� ���#�
	-��.0/
�21 � contains a column name, and each ���"� �����3	-��.4/ �516� contains a row name.
�!�"� �*�7�$	 contains the cube name, i.e., � . For this model, the members of a cube are the
row names and the column names.

Example 2.1 The cube �������
� can be described in this model by the matrix ��8:9�;=<>8
of Figure 4 2. �?8>9�;=<>8 is defined as a function from ��������������.��@� 	A�"���������'�7B@� into

� . � contains symbols like parts, sales, or 10. For example � 8>9�;=<:8 � �*�7�$	C� sales,
� 8>9-;=<>8 � ����."	�� parts, � 8>9-;=<>8 ��D ���3	�� � and � 8>9�;=<>8 �FE �:G$	�� 10. H

sales parts years amounts amounts amounts amounts
regions � � east west south north

� nuts 1996 50 60 40 �
� nuts 1995 70 10 20 �
� nuts 1994 100 30 � 10
� bolts 1996 70 � � 40
� bolts 1995 50 10 10 20
� bolts 1994 40 40 � �
� screws 1996 � 50 50 60
� screws 1995 10 50 60 30
� screws 1994 10 50 60 20

Figure 4. The matrix representing the cube sales

2.1.2.2. Hypercubes

A logical model of hypercubes is proposed by [AGR 96, AGR 97]. In this model,
information is structured under the form of hypercubes, that may contain tuples. The
proposal of [HAC 97c, HAC 97b] looks like this one. The main difference is that for
[HAC 97c, HAC 97b] the dimensions are unnamed.

Let I be a set of dimension names. Each dimension JK�LI is associated with
a domain of values J ���NM . In that model, members and measures are taken from the
domain of each dimension. Let � and . be two particular constants.

O
. The coding chosen is arbitrary. We could as well model a three-dimensional cube by a set of

matrices, as suggested by the authors of the work, but this coding is not satisfactory since the
third dimension would not have been treated symmetrically to the others.
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Let J�� �������'� J�� � J � � ������� J � � � I . A cell reference is a tuple
� ��� ������� � ���	� of mem-

bers, where ��
 �)J ��� M�� ��� � & .3�������'����( . A cell contents is either the constant � , the
constant . , or a tuple

� � �� �������'� � �� � , where each � �
 �4J ��� M�
� ��� �2& . �������'���$( .
A � -dimensional cube � is a function � � mapping each cell reference to one of the

following cell contents:

– a tuple
� � �� ������� � � �� � of measures if the cell of reference

� ��� �������'� ����� contains� � �� �������'� � �� � ,
– the constant � if the cell of reference

� ��� ������� � ���	� does not exist for � ,

– the constant . if the cell of reference
� � � ������� � � � � does exist but contains no

measure 3.

Example 2.2 We describe the cube �������
� in this model. Let years, parts, regions
and amounts be dimensions whose domains are: J ����� <>9���8 � �$.���� G*��.������@��.���� B
� ,
J ����� 9����F8 � ���������3��� �
� ���3� � � �
� � � � , J ��� ��<"! 
$# � 8 �6����� ���-��� �
���-�
� ������% � ��������% � , and
J ��� 9�& #�' �(�F8*) � .

The cube �������
� is defined by three dimensions for the members (years, parts and
regions), one dimension for the measures (amounts) and the function �,8:9�;=<>8 from
J ��� � <>9���8 	 J ��� � 9��+�F8 	 J ��� ��<,! 
$# � 8 into J ��� 9�& #+' �(�F8.- �"�*��. � . A reference is for
example � .��/���@� �������3��� �����:	 . The function ��8>9�;=<>8 associates references with contents.
For example, �?8>9-;=<>8 � .������@� nuts, west) =

� .�� � , and �?8>9�; <>8 � .��/�3B���� �
� ���3� ��������% 	 � � 4.
H

2.1.2.3. Relations and cubes

We present the model proposed by [GYS 97], in which the contents of a cube is
separated from its multidimensional structure. The contents of a cube corresponds to
the contents of a set of relations (in the sense of the relational model), and its struc-
ture corresponds to its representation (the number of its dimensions, the repartition of
its contents into members and measures 5). The model of [LI 96] is close to that of
[GYS 97], except that there is no emphasis on the separation between contents and
structure. Moreover, the model of [LI 96] allows only one numeric constant as cell
contents.

The symbols used are taken from a set 0 of names, and a set 1 of values, where
a particular constant � has been added to describe (inapplicable or unknown) null
values.

2
. Note that in this model, the semantics of the two particular constants 0 and 1 is taken into

account in the operators of the manipulation language.3
. not to be confused with 46587�9;:,5=< ��> >�?/@�A�B�CED"FG@HF�B=I�D,J�KMLONQP R

!S
. The term “measure” that we use to denote the information represented within a cell should

not be confused with what [GYS 97] calls “contents” and which stands for both members and
measures in their model.
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A dimension is defined by its name J � 0 and a relation (in the sense of the
relational model) � M . Each tuple of � M describes a member of J and contains a unique
identifier per member. Hence each relation � M contains a key attribute named

� 
 M ,
whose values are pairwise distinct for each couple of different relations.

A cell reference is the cartesian product of identifiers of several members. A cell
is noted �F� � ������� � � � 	 with ��
���1 � � �2& .3�������'����( .

The contents of a � -dimensional cube � having dimensions J � ������� � J�� is a set of
� relations ��M��"������� � �"M�� to describe members, and a relation � & to describe measures.

The relation � & relates the cell references of � to their contents. It is composed of
all attributes

� 
 M of each relation ��M � � � �K& . �������'� ��( used to describe references, and
of some other attributes to describe the values of measures.

The structure of � is a particular choice made for representing the data contai-
ned in relations ��M��"������� ���"M���� � & . If necessary, this representation is augmented with
the constant � to describe every combination of members contained in the relations
� M ���������'��� M � .

Example 2.3 We describe the cube �������
� in this model. Each dimension is described
by a relation ��� ��� , � �
� J � � � or � � � ��������� as depicted in Figure 5. The contents of
the cube ����� �
� is provided by these three relations plus the relation � & of Figure
6. Figure 7 illustrates the structure of the cube. A cell of this cube is for example
� .���������������� �+� �
���-��.��$	 . H

product
� 
 M parts
p1 nuts
p2 bolts
p3 screws

location
� 
 M regions cities
l1 east lyon
l2 east dijon
...

...
...

l7 north paris
...

...
...

time
� 
 M years
t1 1994
t2 1995
t3 1996

Figure 5. The contents of the dimensions of the cube sales

2.2. Granularity

2.2.1. User’s need

The second aspect of the user-analyst view of information is to organize this in-
formation into a hierarchy, so as to be able to examine it at different levels of detail.
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� & ��� ���$� � 
 M ���
� J � � �-� � 
 M ��� � ����������� � 
 M amount
t1 p1 l1 60
t1 p1 l2 40
...

...
...

...
t2 p3 l7 40
...

...
...

...

Figure 6. The contents of the cells of the cube sales
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Figure 7. The structure of the cube sales

These levels are called granularity levels in the OLAP literature. A level is a named set
of members. In general, the lowest level is that of the warehouse. Successive aggre-
gations on these data (sums or averages for example) provide new viewpoints that are
less and less detailed and constitute higher and higher levels in the hierarchy. These
granularity levels are described by a graph or a set of graphs, that indicate how mem-
bers of some level are grouped to form the members of the immediate higher level.
Usually each graph is associated with a dimension and represents a hierarchy.

Consider Figure 8. Three graphs describe the different granularity levels of the
three dimensions of the cube �������
� . The dimension names and the level names appear
in bold. Usually the name of the dimension is given to the topmost level of a hierarchy.
The first graph tells us that data described at the regions level (identified by members
“east”, “west”, “north” and “south”) are obtained from the data described at the cities
level (identified by members “lyon”, ����� , “lille”). The parts and the years are grouped
to form the topmost level of their respective hierarchy. Hence sales results can be
viewed at the regions level (Figure 3) or at the cities level (Figure 9).
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2.2.2. Formal proposals

Several formal proposals do not include the granularity aspect within the data mo-
del [GYS 96, AGR 96, AGR 97, GYS 97]. Thus modeling levels other than those des-
cribed in e.g., the cube �������
� , would mean modeling them as new cubes, without being
able to link the cubes representing the different levels. These proposals prefer taking
granularity into account via external functions that can be used to specify groupings
and aggregations on data.
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The approaches intended to model hierarchies within the data model can be divided
into two main proposals:

– the use of specific relations to model hierarchies [LI 96, HAC 97b], and

– the use of built-in functions to model levels [CAB 97, CAB 98].

We next give an example of each category.

2.2.2.1. Using relations

In the model of [LI 96] hierarchies are described by specific relations, called grou-
ping relations, (where attributes are prefixed with a dimension name). These relations
can be manipulated in order to generate ad-hoc groupings.

Example 2.4 The grouping relation ��� of Figure 10 is used to model part of the gra-
nularity associated with the cube ����� ��� . It represents how cities are grouped to form
regions. Therefore this relation can be used to compute the cube ����� �
� from the cube
����� ��� � � �����
� (Figure 9). H

gr location.region location.cities
east lyon
east dijon

...
...

north paris
...

...

Figure 10. The grouping relation gr

2.2.2.2. Modeling levels

For [CAB 97, CAB 98], each dimension J of a cube is defined by a triple
��� �����!�

� �
� ��� � , with
�

the set of levels of J , ��� a partial order on these levels, and
� �
����� a

family of functions describing groupings.

The functions of
� �
� �	� that define the groupings are based on the order ��� accor-

ding to the following principle: for each level � � � ��
 � �
such that � � ��� ��
 ,

� �
����� ;
�; �
is a function of

� �
���	� having J ��� ; � for domain and ranging over J ��� ;�� . For each
� � � ��
 � ��� � �

such that � � ��� ��
�������� , we have
� �
� ��� ;
�; � � � �
� ��� ;
�; ��� � �
����� ;
�; � .

Example 2.5 Three dimensions are needed to model the cube �������
� . These dimensions
are named ��� ��� , � �
� J � � � and � � � ����� ��� . We detail the � � � ����� ��� dimension. � � � ���������
is characterized by the tuple

������� � ��� � 0 �����������! #"$��%5� � �
� ���������! #"$��% � where����� � ��� � 0 is the set of levels � � � ��� �
�3���
����� �����3� ��� � ���������?� , with � � �����
�����������! &"'��%
�������������(���������! &"'��% ��� � � ������� . Each level of

����� � ��� � 0 is associated with a
domain. For example, J ��� ��<,! 
$# �38 � ���������-�+� �
� �-� � ������% � ��������% � . Hence, a func-
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tion from the family
� �
���	�������! &"$��% is

� �
� ���������! #"$��% ��<"! 
$# � 8� 
 � 
 <>8 with for example,
� �
� ���������! #"$��% ��<,! 
 # � 8� 
 � 
 <>8 � ��� ��� 	�� ��� ��� . H

3. Elementary operations

We present in this section a list of elementary manipulations 6 for OLAP. One of
the contributions of this work is to propose a simple categorization of these elementary
operations according to their concern with

– the multidimensional structure (called restructuring operations),
– the granularity,
– the transactional manipulations (i.e., adaptation of classical relational manipu-

lations)

3.1. Restructuring operations

3.1.1. User’s need

The operations concerned with this multidimensional structure are motivated by
the interactive aspect of OLAP manipulation, and the need for animating the repre-
sentation. Moreover, they illustrate the importance of the relationship between data
manipulation and the cube’s representation on a screen. They are of particular use
for specifying bidimensional or three-dimensional representations of hypercubes. Re-
fering to the cube metaphor, an intuitive description of these operations consists in
pivoting the cube, cutting it into slices, interchanging or combining coordinates and
contents. We choose to call these operations restructuring operations since they allow
to change in a relative way the multidimensional view, by manipulating the positions
of members and measures. More precisely: we call restructuring operations every bi-
jective elementary operation used to change the viewpoint on a cube.

Thus each cube obtained by restructuring an initial cube contains the necessary
and sufficient information for obtaining the initial cube again by using the inverse
restructuring operation. We illustrate these restructuring operations on the cube �������
�

depicted Figure 3.

3.1.1.1. “Rotate”

The first elementary operation we present is known as “pivot” or “rotate”, and
consists in rotating the cube around one of the three axes going through the center of
two opposite facets, in order to display a different set of facets. Figure 11 illustrates a
rotating of the cube �������
� around one of the horizontal axes.

?
. Note that the term elementary refers to the user’s need, since the elementary manipulations

presented here are the ones appearing more frequently in the literature. They are not supposed
to cover the entire range of (e.g., domain-specific) OLAP treatments.
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Figure 11. “Rotate”

This operation is typically three-dimensional and has no influence on the number
of dimensions used for representing the resulting cube. It is motivated by the fact
that a (three-dimensional) cube is to be displayed in a plane. Thus only three facets
are represented, so the rotate operation resembles to a selection of the facets to be
displayed.

3.1.1.2. “Switch”

A second operation called “switch” consists simply in interchanging the position
of the members on an axis (e.g., south and north), to display a hidden facet.

3.1.1.3. “Split”

In the case of some three-dimensional representation of a cube, the “split” ope-
ration consists in presenting each “slice” of a cube, that is to go from the three-
dimensional representation to a representation of the cube in the form of a set of
tables. Figure 12 shows an example of splitting the cube �������
� according to the re-
gions dimension.

Hence this operation allows to reduce the number of dimensions needed for re-
presenting a cube. Its generalization allows, for example, to cut a four-dimensional
hypercube into three-dimensional cubes. It is to be noticed that the number of tables
resulting from a split operation depends only on information contained within the ini-
tial cube (e.g., the number of members in a dimension) and is not known in advance.
The inverse operation has no established name in the OLAP literature, and allows for
example to reconstruct the regions dimension of the cube sales of Figure 3 from the
tables of Figure 12.
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sales east 1996 1995 1994

nuts 50 70 100
screws 10 10
bolts 70 50 40

sales west 1996 1995 1994

nuts 60 10 30
screws 50 50 50
bolts 10 40

sales south 1996 1995 1994

nuts 40 20
screws 50 60 60
bolts 10

sales north 1996 1995 1994

nuts 10
screws 60 30 20
bolts 40 20

Figure 12. “Split”

3.1.1.4. “Nest”

The “nest” operation allows to nest members, as depicted in Figure 13 where the
members of the parts dimension of the cube �������
� have been nested with the members
of the regions dimension. One interest of this operation is that it allows to group in
a single two-dimensional representation the whole information (members and mea-
sures) contained in a cube or an hypercube, whatever the number of dimensions. The
inverse operation, called “unnest” reconstructs a dimension from nested members.

sales 1996 1995 1994

east 50 70 100
west 60 10 30nuts
north 10
south 40 20
east 10 10
west 50 50 50screws
north 60 30 20
south 50 60 60
east 70 50 40
west 10 40bolts
north 40 20
south 10

Figure 13. “Nest”

3.1.1.5. “Push”

The last restructuring operation consists in combining the members of some di-
mension of a cube with the measures of the cube, thus making these members be-
coming cell contents. It is called “push”. Figure 14 gives an example from the cube
����� ��� where the years have been pushed inside the cube.
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sales east west north south

1996 50 1996 60 1996 40
nuts 1995 70 1995 10 1995 20

1994 100 1994 30 1994 10
1996 50 1996 60 1996 50

screws 1995 10 1995 50 1995 30 1995 60
1994 10 1994 50 1994 20 1994 60
1996 70 1996 40

bolts 1995 50 1995 10 1995 20 1995 10
1994 40 1994 40

Figure 14. “Push”

The inverse operation, called “pull”, allows to turn some measures of a cube into
members, i.e., to construct with these new members a new dimension for representing
the cube. For example, to obtain the representation of Figure 3 from that of Figure 14,
one has to “pull” the year dimension. Note that these two operations provide symmetric
treatments of measures and members.

3.1.2. Formal proposals

Most of the formal proposals suggest modelling at-most three restructuring opera-
tions [AGR 96, AGR 97, LI 96, CAB 97, CAB 98, GYS 97] (mostly push and pull).
Only [GYS 96, HAC 97c, HAC 97b] emphasize restructuring. It seems interesting to
show how restructuring is to be expressed by means of the different languages:

– by appropriate operators in the algebraic languages [GYS 96, AGR 96, AGR 97,
LI 96, GYS 97], and

– by acting on the syntactical position of variables, in the declarative languages
(calculus or rule-based) [HAC 97c, HAC 97b, CAB 97, CAB 98].

3.1.2.1. Restructuring operators

To animate the data model, the algebra of [GYS 96] features five operators (cal-
led restructuring operators), a transposition operator (expressible by combining some
other operators), and an operator called redundancy removal operator.

Two restructuring operators are used to switch from a relational form (i.e., a set of
tuples with no row names) to a cross-tab form (where the row names and the column
names are formed using values of some fields of the tuples of the relational like form).
These two operations allow to code a form of nesting (e.g., one can consider that the
parts are nested with the years in the cube of Figure 4).

Two other restructuring operators allow to express directly the split operation and
its dual operation.
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The last restructuring operator allows to interchange two rows of a cube, and cor-
responds in a restricted way to the switched operation. As both members and measures
are contained in a row or a column of the matrix, a very restricted form of push and
pull can be coded with this operator (since the model does not allow to represent more
than one measure as cell contents).

A classical transposition operator can be simulated by combining some other ope-
rators of the language. Thanks to this operator, every operation on rows (resp. co-
lumns) of a cube can be similarly performed on columns (resp. rows).

The redundancy removal operator is intended to condense the representation (e.g.,
by removing the combinations containing the symbol � ). It allows for example to go
from the left side representation of Figure 15, which could be an intermediate result
of a query, to the right side representation.

t 1 2 3
a 10 � �
a � 20 �
a � � 30

t 1 2 3
a 10 20 30

Figure 15. Redundancy removal

Obviously, the way operations are modeled in the languages depends on the under-
lying data model. For example, the data model used by [AGR 96, AGR 97] allows for
direct definition of the push and pull operators. Note that [LI 96] includes two opera-
tors for constructing cubes from relations, and that for [GYS 97], the animation of a
cube concerns only its multidimensional structure (e.g., going from a two-dimensional
representation of a cube to a three-dimensional one). Hence these restructuring opera-
tions modify the representation and leave the contents unchanged.

3.1.2.2. Syntactical positions of variables

In the Datalog-like language proposed by [HAC 97c, HAC 97b] the restructuring
operations (rotate, split, nest, push and pull) rely on the syntactical position of va-
riables. The split operation is possible thanks to a second order syntax 7 in the spirit of
Hilog [CHE 93]. Nesting is allowed with the possibility of building structured names
(called nested names) from atomic constants with a specific functor noted “ � ”. For the
push and pull operations, a semantic property of the language guarantees the unicity
of the association between cell references and contents. For example, this property is
used to forbid expressing a push not satisfying this unicity condition.

�
. The language conserves a first order semantics.
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3.2. Granularity operations

3.2.1. User’s need

The operations associated with the granularity specify the relative navigation through
the different levels of the hierarchies.

3.2.1.1. “Roll-up”

The first operation consists in representing the information of a cube at a higher
granularity level of some dimension. The term used is to “roll-up” data from one level
to another. The roll-up operation is parameterized by an aggregate function (e.g., sum,
count) specifying how data of some level are aggregated from data at the immediate
lower level (in our examples, the sum function will be used by default). For example,
Figure 16 displays the cube �������
� “rolled-up” on the years dimension, from the years
level to the topmost level (summarizing the sales for all years) by summing the sales
for each part in each region.
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Figure 16. “Roll-up”

The operation describing the consolidation of a cube (i.e., the computation of
every aggregation according to every level of every dimension) is called “data cu-
be” [GRA 96], and can be seen as the generalization of the roll-up operation. Figure
17 illustrates the result of such an operation applied to the cube ����� �
� (e.g., the sum
of 1996 sales for all parts and all regions is 420).

3.2.1.2. “Drill-down”

The second operation, called “drill-down”, consists in representing the information
at a lower level of granularity and thus in a more detailed form. It can be seen as a
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Figure 17. Consolidation of the cube sales

dual operation of the roll-up operation. Indeed, a drill-down on the cube �������
� from
the regions level to the cities level results in the cube of figure 9.

Note that, unlike the restructuring operations, the roll-up and drill-down opera-
tions need information not contained in the cube. For example, to perform a roll-up,
one needs to know which aggregation function is to be applied on data. Also the drill-
down operation requires the knowledge of data of the lower level, or the distribution
of current data on the immediate lower level. Note that these operations are orthogonal
to the way data are represented. In particular, data from different levels can be repre-
sented on the same cube (it is the case for figure 17 displaying the result of the data
cube operation).

3.2.2. Formal proposals

Only one proposal does not take into account the granularity aspect [GYS 96]. The
other proposals can be divided into two categories, whether they make use of external
functions:

– only to apply an aggregation (grouping being expressed with the language)
[LI 96, HAC 97c, HAC 97b, CAB 97, CAB 98], or

– both to define groupings and to apply an aggregation [AGR 96, AGR 97,
GYS 97].

3.2.2.1. Aggregating via external functions

In [LI 96], granularity is taken into account either via grouping relations or directly
on cubes.
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Three operators act on (grouping) relations. A first one allows to sort the tuples of
some relation, similarly to the order-by clause of SQL. A second one allows to form
(possibly non-disjoint) regular intervals of tuples on a relation. The third operator al-
lows to apply an aggregate function to a cube, via the groupings defined in a grouping
relation. This operator can be used to express the roll-up operation from any kind of
groupings (specified by query or not).

An operator allows to express several roll-ups directly on a cube, without the need
of a grouping relation.

For [HAC 97b], roll-up can be expressed by using specific literals called aggregate
subgoals, parameterized by external functions. Aggregate subgoals are of the form:� ��� � 0 � 0 � ������� � 0 � 	:	 where

�
is a constant or a variable, � is an aggregate ope-

rator and 0�� 0 � �������'� 0 � 	 is a possibly non ground cell reference. Such an aggregate
subgoal holds if the function � applied to the most detailed information of the cube 0
matching the reference 0 � 0 � ������� � 0 � 	 is equal to

�
.

In the calculus of [CAB 97, CAB 98] functions (called
� �
� � functions) are used

as atoms in formulae to select in a relative manner the level where the obtained result
will be considered. Navigation between levels like roll-up and drill-down is then ea-
sily specifiable. The interpreted functions parameterizing the calculus allow to specify
operations on measures, and may constitute the information needed by the naviga-
tion (e.g., the aggregate functions used for roll-ups). These functions are of two types:
scalar functions and aggregate functions. A scalar function is applied directly to a
variable, whereas an aggregate function is applied to the result of a query, via the
groupings defined by the

� �
��� functions.

3.2.2.2. Grouping and aggregating via external functions

For [GYS 97], granularity is taken into account by two operators of the query lan-
guage, that are parameterized by external functions. These operators do not change the
multidimensional structure of a cube, but only its contents (members and measures),
and therefore concern only the underlying relations. A classification operator allows to
specify groupings of tuples, and a consolidation operator allows to apply an aggregate
function on groups of tuples.

3.3. Adaptation of classical manipulations

3.3.1. User’s need

We now consider the extension of well-known manipulation operations of the stan-
dard relational framework, to deal with multidimensional information.

3.3.1.1. Selection

Selection applied to a cube consists in defining a subset of its data. The selection
may apply on members or measures. Figure 18 shows an example of a selection
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operation on the cube ����� ��� in order to display only the amount of bolts and nuts sold
in 1995 and 1996 in the north and in the south.

40 40

40

2020

40

1995

1996

nuts
bolts south

north

Figure 18. Selecting members

3.3.1.2. Projection

The extension of projection to a cube restricts the set of dimensions. Suppose for
example we want to project an � -dimensional cube on ��� � dimensions, with � 1
�N/ � . In this case, the unicity of the association between cell references and contents
must also hold in the resulting ( ����� )-dimensional cube. It is the case when each of
the removed � dimensions is constituted of a single member. It is also the case when
during the projection, the members of each removed � dimension are aggregated at
the topmost level of each corresponding hierarchy. These � dimensions then become
useless for representing the resulting cube (as shown in Figure 19, for the cube �������
�

being projected on dimensions ��� � � ������� and ���
� J � � � . The measures are aggregated
according to the ��� ��� dimension, with a principle similar to a roll-up operation).

sales 94-96 east west south north

nuts 220 100 60 10
bolts 160 50 10 60
screws 20 150 170 110

Figure 19. Projection on the dimensions location and product

Note that the combination of selections and projections is often called “slice-and-
dice” in the OLAP literature.

3.3.1.3. Join

The extension of the join operation is illustrated on the tables of Figures 2 and 20.
These tables are joined according to the ���
� J � � � dimension (detailed in figure 8). The
goal of this operation is to represent in the same table the amount of parts sold and
their unitary price. The result is depicted in Figure 21.
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prices 1996 1996

nuts 1
bolts 0.7
screws 0.8

Figure 20. The table prices 1996

sales prices 1996 east west south north

nuts 50 1 60 1 40 1 1
bolts 70 0.7 0.7 0.7 40 0.7
screws 0.8 50 0.8 50 0.8 60 0.8

Figure 21. Join

3.3.1.4. Other operations

The other classical data manipulation operations are the renaming operation and
the set operations (union, intersection and difference). The extension of these opera-
tions to multidimensional information is straightforward.

3.3.2. Formal proposals

All the proposals model some classical transactional operations. Two main cate-
gories appear: the works where these operations

– need to be adapted (e.g., to the structure) [GYS 96, AGR 96, AGR 97, CAB 97,
CAB 98], or

– are expressed as usual [LI 96, HAC 97c, HAC 97b, GYS 97].

3.3.2.1. Adaptation of relational operations to the multidimensional model

The algebra proposed by [AGR 96, AGR 97] features a projection operator that al-
lows to remove one dimension of a cube. The domain of the removed dimension must
have at-most one member so that the projection preserves the functional dependency
between members and measures.

Another operator allows to perform selection on members. Combined with the pull
operator, selecting measures becomes possible.

A join operator allows to combine two cubes according to some dimensions. This
operator is parameterized by external functions that can be used to perform computa-
tions on the members of the joined dimensions, and on the measures 8.

�
. Roll-up and drill-down are in fact expressed with an operator that is a particular case of this

join operator.
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The authors specify that the other classical operations can be expressed by combi-
ning some of their language’s operators.

Most of the operators of the algebra of [GYS 96] work either exclusively on rows,
or exclusively on columns, which simplifies their definition. For example, the selec-
tion operator allows to select the rows of a cube for data satisfying some conditions,
and the projection operator allows to select a set of columns according to their name.
By combining these operators with that of transposition, expressing selection or pro-
jection on both rows and columns becomes possible.

3.3.2.2. Relational operations expressed as usual

In the framework of [GYS 97], the classical relational operators operate only on
the contents of a cube, leaving its multidimensional structure unchanged. As the con-
tents of a cube is modeled by classical relations, classical relational operations on a
cube are directly translated into the corresponding operations of the relational algebra
on these underlying relations.

It is the same for [LI 96], where the operators of the relational algebra can be used
on (grouping) relations. Additional operators are provided on cubes (e.g., to compute
the union of two cubes).

For the rule-based language of [HAC 97c, HAC 97b], the classical operations are
expressed as in Datalog.

4. Querying

We present in this section query expression in the context of OLAP. As an illus-
tration, we introduce several typical OLAP queries, and the way they are handled by
the formal languages. We choose to respect the original syntax of the languages to
illustrate the flavor of query writing. These queries refer to the cubes and the tables
introduced in the previous sections.

4.1. Query expression

4.1.1. User’s need

The situation of OLAP recalls that of databases before the relational model was
proposed: concepts and systems do exist 9, but with no sound theoretical foundations.
As a consequence, there exists no operational language allowing to specify com-
binations of operations [GYS 96, GYS 97]. In fact neither databases nor analytical

>
. e.g., Codd et al. [COD 93] and the author of the OLAP report [PEN 98] propose rules for

testing whether a product implementing OLAP fonctionnalities effectively answers the needs
of user-analysts.
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tools (e.g., spreadsheets) provide languages suitable for expressing OLAP treatments
[COD 93, CHA 97].

[COD 93] points out the need for intuitive manipulation tools, and [CAB 97] re-
marks that several data manipulation languages at different abstraction levels are nee-
ded. On the one hand, the final user should be provided with a user-friendly interface
from which graphical metaphors can be manipulated via mouse-click. On the other
hand, the sophisticated user should be provided with a declarative high-level language
to specify non-trivial treatments.

4.1.2. Formal proposals

The proposed languages can be classified according to the paradigms they are ba-
sed on. These paradigms are the classical ones used in the area of query languages
[ABI 95]:

– algebras [GYS 96, AGR 96, AGR 97, LI 96, GYS 97],

– calculi [CAB 97, CAB 98, GYS 97], and Datalog-like [HAC 97c, HAC 97b]

4.1.2.1. Constructive formulation

For [GYS 96] an algebraic program is made of assignment instructions having the
following form:

��� � � �����
��� ��� � � ����������������� �
where � is the resulting cube name,

� � �����
��� ��� � is the name of an algebraic opera-
tor, and

� � ��������������� � are the arguments required by the operator. The language so-
defined is complete for the data model: It allows to express every transformation from
a tabular database to another tabular database.

The algebra proposed by [AGR 96, AGR 97] has deliberately been conceived as a
collection of operators translatable into SQL. The authors observe that it is at-least as
expressive as the relational algebra.

Two algebras are proposed by [LI 96] to manipulate (grouping) relations and cubes.
The first one is called grouping algebra. It is an extension of the relational algebra to-
wards sorting and aggregating facilities. The approach developed by the authors relies
on the use of this algebra to define grouping relations, and to use these relations to ag-
gregate and sort data. The second algebra (called multidimensional algebra) concerns
the direct manipulations of cubes. One of its roles is to build cubes from classical
relations. The expressive power of these two languages has not been studied, but the
grouping algebra is obviously at least as expressive as the relational algebra.

The algebra proposed by [GYS 97] exploits the dissociation between a cube and
the relations describing its contents 10. It features 11 operators, some of which operate

��P
. [GYS 97] also propose an equivalent calculus that does not rely on the dissociation between

cubes’ contents and structure.
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only on the structure, while the others operate only on the contents. Its expressive
power has not been characterized.

4.1.2.2. Declarative formulation

The calculus proposed by [CAB 97, CAB 98] is parameterized by interpreted (sca-
lar or aggregate) functions. A query is an expression of the form: ��� � �������'��� ��� ���� � � ��� � �������'��� � 	�� , where

� � � ��� � �������'��� � 	 is a first order formula with � ��� � ������� ��� �
being the only free variables (intuitively, the symbol “:” is used to separate cell refe-
rences from cell contents). It is composed by equality atoms involving cubes,

� �
� �

functions and interpreted functions. The variables range over members and measures
(the elements of 1 ).

If for all ��� �������'� ��� belonging to 1 there exists at-most one � such that
� � � � ��� ������ � ��� 	 then the function ��� describing the contents of cube � is defined as follows:

	 � � ��� �������'� ���0��1 � �?���F� .3�������'� ��� 	�� ��
 � � � � ��� �������'� ��� 	
Otherwise, if � � � � � 
 � ��� ������� � ��� � 1 with � ��
� � 
 and such that

� � � � � ��� ������ � � � 	 and
� � � 
 � � � ������� � � � 	 , then the result of the query is undefined since it

means associating more than one contents with the unique cell reference �F� .3�������'� � � 	 .
In the general case of the calculus proposed by [CAB 97, CAB 98], definiteness

of the result is undecidable. This property becomes decidable under certain conditions
(e.g., a positive and existential calculus with no

� �
��� function). The authors specify in
[CAB 97] which functions allow to make the calculus as expressive as the relational
algebra extended with aggregate functions [KLU 82].

In the language proposed by [HAC 97c, HAC 97b], rules à la Datalog are used
to define new cell references and their associated contents from existing cells. The
language has a standard model-theoretic declarative semantics and an equivalent ope-
rational least fixpoint semantics, with the restriction that a program admits no model
if it associates more than one cell contents with a unique cell reference. Testing whe-
ther a program admits a model has not been done. In [HAC 97c] the authors present a
version of the language that can express every query computable in polynomial time
on ordered databases.

4.2. Typical queries

We give typical OLAP queries and relate them with the important manipulation
aspects desired by the user. We give for each typical query one example of trans-
lation into a formal language. Note that some of these queries cannot be expressed
in some language without (heavy) coding, due to the restrictions of the data model.
For example, the algebra of [GYS 96] cannot express directly the queries concerning
the granularity aspect. Another example is the treatments based on cumulative com-
putations (see query 4.7 below) that can be expressed in many languages only by
composing several queries.
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4.2.1. Conceptual modeling

Dimensions must be “equivalent” (it is said symmetric) in their structure and in the
operational capacities they support. Indeed, as illustrated when presenting the push
and pull operations, each data of some dimension can appear as member or as mea-
sure. Thus none of these statues should be privileged. Therefore the data of any di-
mension can be aggregated, and it should also be possible to count the members of
any dimension level, as shown by query 4.1.

(4.1)
What is the number of cities where less
than 20 units of any of the three parts have
been sold in 1996?

Example 4.1 We translate this query in the algebra of [AGR 96, AGR 97]. We detail
the different steps (the intermediate cubes have been named for the sake of readabi-
lity). First, the measures have to be pulled from the cube sales cities (Figure 9) so that
selection on the amounts can be performed:

����� � � �������
� � � ��� �
�3� �����������:	
Let us call � . the resulting cube. The amounts of � . less than 20 are selected (using
the �
��������� � � operator), and so is the year 1996:

�
�
������� � � �
�
�
� ����� � � � � . � � ���������-��/ D �3	%�

� �����
�3�-� . �/� B$	-�
Let ��D be the resulting cube. Two agreggations ( ��������� ) are then performed on ��D .
Indeed, the parts dimension may contain more than one member, which disallows the
suppression of that dimension by performing a projection on the cities dimension.
So we must first aggregate every part, resulting in a cube detailing only the cities
dimension. Next, a count aggregate on the cities is performed, leading to the desired
result:

��������� �
������� � �F��D �%� & ���������3� � & <"�+!%<�� ( �$� � �������:	-�

� & � � �����
�3� � & <"�+!%<�� ( �$� � �������:	
In this last part of the query, � ������� is an external function counting measures, � & <"�+!-<��
and � & <"�+!-<�� are both external functions defining respectively how parts and cities are
grouped. H

Concerning granularity, some treatments, such as the one illustrated by query 4.2,
require the definition of multiple hierarchies for one dimension (or “diamond hierar-
chies”, as depicted in figure 22). These hierarchies model several grouping possibili-
ties.
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Figure 22. Example of a diamond hierarchy

(4.2) Compute the sale results by month and by
week.

Example 4.2 We translate this query into the language of [CAB 97, CAB 98]. Consi-
der the following definition of the ��� ��� dimension. It is modeled by the triple

� � �
�� �� � �
� �� � , where

�
is the set of levels � J � � �3��� ��� � �3����������%�� � � ����� �3����� ��� � , with

J � � � �� � ����� � , J � � �(�� ��������%�� , � ��� � � �� � ��� � � , ��������%�� �� � ����� � , and
������� ���� ���� ��� .

The domains associated with each level are:

J ���NM 9 � 8 �L�$.��@.��(� G*� ����� � E .��@. D �(� B�� ,
J ����� <>< � 8 � ��� ��� ��.��(� G*������� ��� ��� �	� D � J � � � B�� ,
J ��� & # �(����8 � �-��� �M� G*��������� J � � �3B@� ,
J ��� � <>9���8 � �$.��/� G*��.��/���@��.��/�3B@� , and
J ��� � 
 & < �L����� ���3� .

Suppose a cube named �������
� J � � � contains daily parts sales in each region. We show
how to express the computation of the total sales by week (the query computing the
total sales by month can be straitforwardly deduced):
���3��� � ��� ��� �

� � ����� � �3� � ��� � � �
� � ����� �
� J � � � & I �
	 � � �3��� � � � � � � ��
���� � 0 � ��(��
� � � �
��� � 
 & < � <>< � 8M 9 � 8 � �
	��
� � � � �
���E� � # M ' �8� � � # M ' �8�� 9���� � ��	:	-� H

Each dimension should be able to contain members or measures computed from
other data, as illustrated by query 4.3. These members or measures are called “calcu-
lated members” or “calculated measures”.
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(4.3)

Compute the turnover by part, region and
year, by multiplying the number of products
sold by their unitary price. We want this
number to appear as a measure in the cube
����� �
� .

Example 4.3 We translate this query into the language of [GYS 97]. We use the cube
� ��� � �
� , that contains the parts prices by years (figure 23). We join the cube ����� ��� with
the cube � ��� � �
� . First, the attributes years and parts of the cube � ��� � �
� are renamed
using the renaming operator ( � ):

� ��� � <:9���8���� ���*� 9��+�F8 � � ��� � �
�"	7	
Next, the Cartesian product of cubes � ��� � �
� and �������
� is done with a selection ( � ) to
complete the join:

� ���M� <>9���8	� ��� � 9����F8 �
�������
� 	 �
� ��� � <>9���8 �
� ���*� 9����F8 � � ��� � �
��	:	7	:	

A consolidation operator (noted
�

) is used to multiply the measures with each other
(this is done only for calling an external function), which finally gives:
� �

� ���M� <:9���8�� ���6� 9����F8 �
�������
� 	 �
� ��� � <>9���8 ��� ���*� 9��+�F8 � � ��� � �
�"	7	:	7	-�

� & ' ; � 	 (
�

)

where � & ' ; � is an external function that multiplies each amount measure with the
corresponding price measure of the cell. The turnover constitutes a new measure of
the resulting cube. H

prices 1996 1995 1994

nuts 1 1 0.9
bolts 0.7 0.6 0.5
screws 0.8 0.7 0.8

Figure 23. The table prices

4.2.2. Manipulations

According to [COD 93], the interface offered to the user must be able to provide a
synthetic and flexible representation, and the animation of the data model. The authors
also claim that a multidimensional model is intuitively more easy manipulated than a
monodimensional one. This manipulation supposes sophisticated viewpoint changes
based on the cube metaphor. Query 4.4 is such an example.
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(4.4)

Present the information concerning the
screws sales and the bolts sales under the
form of cross-tabs, with the years as row
names and the parts nested with the re-
gions as column names. Separate the result
into two tables according to the amount
sold being less than 30 or not.

Example 4.4 We translate this query in the algebra of [GYS 96], starting from the
cube of Figure 4. For the sake of simplicity we follow the method of [GYS 96] and
we use the transposition operator in a transparent manner. Thus if � is a cube,

�
is an

operator and � is a list of arguments for
�

, then
� � �F� 	 means that the operation

�
is

applied on the rows of � , and
� � � � 	 means that

�
is applied on the columns of � .

Let us detail the query construction. First, parts � � �
� � � and � �
� ��� are selected (opera-
tor � 
 � ):

� . � � 
 � � 9��+�F8 ��� # ; �F8�� � 9����F8 � 8>�,��< � 8 � �������
��	
The next step consists in selecting the amounts less than or equal to 30. As the selec-
tion operator works on rows, the cube � . must first be restructured in order to obtain
only one amount per row (otherwise a row of � . will be selected if one of the amount
is lesser than or equal to 30). Hence we use the � ��� I operator to obtain a repre-
sentation where regions constitute a column. It is then possible to select the desired
amounts (Figure 24):

� D � � ��� I �8� ��<,! 
$# �38 # � 9�& #+' ��� � � ."	
� E � � 
 � 9�& #+' ����� ��� � � D 	

m3 parts years regions amount amount amount amount
� bolts 1995 west � 10 � �
� bolts 1995 south � � 10 �
� bolts 1995 north � � � 20
� screws 1995 east 10 � � �
� screws 1995 north � � � 30
� screws 1994 east 10 � � �
� screws 1994 north � � � 20

Figure 24. The cube m3

The cube � E of Figure 24 can now be condensed with the �	� ��� 
 operation, to
obtain a single amount column:

� G � �	� ��� 
 � � E 	
Next, the cube is restructured ( � 0 � ��� I ) to make parts and regions become column
names (Figure 25):
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� � � � 0 � ��� I �8� � 9����F8 # � 9�& #�' �(�-� � G
	
� B � � 0 � ��� I �8� ��<"! 
$# � # � 9�& #+' ��� � � � 	

m6 years amount amount amount amount �����
regions � east east west west �����
parts � screws bolts screws bolts �����

� 1995 � � � 10 �����
� 1995 � � � � �����
� 1995 � � � � �����
� 1995 10 � � � �����
� 1995 � � � � �����
� 1994 10 � � � �����
� 1994 � � � � �����

Figure 25. the cube m6

The �	� � � 
 operator can also be used at this step.
��� � �	� ��� 
 � <>9���8 � �4B3	
��� � �	� ��� 
 � 9��+�F8 � ��� 	

The final step consists in interchanging ( ��� � � ���
) row 0 (containing column names)

with row 1 (concerning regions) to name the columns with the regions. The old row
0 can be removed by projecting ( � � �
	 ) on parts and � . The corresponding queries
are:

� � � ��� � � ��� ��<,! 
 # � 8 � ���$	
� ."� � � � �
	 � 9����F8	� � � � �3	

The same is done on the columns to name the rows with the years, to obtain the cube
of Figure 26:

� .3. � ��� � � ��� � � � .��$	
����� ��� � � � E � � � 
 � �
�

� � 9��+�F8 � � . .�	

sales inf30 east west south north north
� screws bolts bolts screws bolts

1995 10 10 10 30 20
1994 10 � � 20 �

Figure 26. The cube sales inf30

Note that selection on columns is used to remove the column containing the symbol
parts. H
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The manipulation specifications should be flexible with respect to the data model
used. Treatments should be allowed whatever the dimension or whatever the granula-
rity level, as shown by query 4.5.

(4.5)
Present the total amount of parts sold for
the 94-96 period in each city.

Example 4.5 We express this query in the language of [LI 96]. The query can be
expressed simply by using the roll-up operator of the multidimensional algebra applied
to the cube sales cities of figure 9. The operator is noted ���� , where � is an aggregate
function,

�
and I describe respectively the attributes and dimensions involved in

the groupings. Constituting a group for each city and aggregating each group is then
written as follows:

����� � 
 � 
 <:8; # � 9�� 
$# � � ����� �
� � � �����
��	 H
Flexibility also concerns granularity. Groupings may be defined statically, by fixing

the hierarchy associated with each dimension, or dynamically, i.e., by query. A dyna-
mic definition of groupings allows to specify groupings other than built-in groupings,
for ad-hoc treatments. This possibility is illustrated by query 4.6 where the year 1995
occurs within two different groupings.

(4.6)
Compute the two years moving average by
regions and by parts.

Example 4.6 This query is written in the language of [LI 96] by using some grouping
algebra operators, as follows: First a grouping relation is defined from relations ��� ��� ,
��� � ��������� and � �
� J � � � ( 	 denotes the Cartesian product):

��� ���
	 � �
� J � � � 	���� � ���������
Next, this relation is divided into two intervals, one for years 1994-1995 and the other
for years 1995-1996, with the operator � allowing to partition a relation.

� � � ��� 
� <>9���8	� 9�8>� � ��� ��� 	 ���
� J � � � 	�� � � ��������� 	
where the constant � � � stands for ascending order, and where the list of parameters. ��.3� D denotes the constitution of intervals. These intervals start from the relation
��� � ��� tuple, ��� � position after the beginning of the previous interval, and are of length
�"� � .
This grouping relation is finally used by the grouping operator 11 on the cube ����� ��� to
compute the average of each group. The query is written:

���
. the one from the grouping algebra, which is different from that of the multidimensional

algebra used in the translation of query 4.5.



Modeling and querying MDDB 545

� � ��� 
 ��� � <>9���8	� � � # M ' �8��� � 9����F8�� ; # � 9�� 
 # ��� ��<,! 
 # � 88>9�; <>8	� 9��%<"��9�!%< �
� ��� � � 
� <>9���8	� 9%8>� �

��� ���
	 � �
� J � � � 	���� � ��������� 	:	
where the attribute fin-years is produced by the operator � and contains one identi-
fier for each interval. product.parts and location.region are attributes of the grouping
relation, and � � ���
� � � is a new attribute for the computed values. These attributes
constitute the attributes of the result of the query. H

The last example we give concerns estimate specifications, that arise frequently in
decision support. Such a treatment is illustrated by the query 4.7.

(4.7)
Compute the sale estimates for years 1997
to 2000, with the hypothesis of a yearly 10
percent sale increase.

Example 4.7 Recursion can be used to express nicely this query in the language of
[HAC 97c, HAC 97b]. Hence, new cells for the cube ����� �
� are defined intentionally:
����� �
� � � � 	 � � � 		� � �

� � � � ����� �
� � � � 	 � � 		� � � � �
	 � � � 	�
 . �
�
� � � ��
 � �@.��*�

	 � 1 D � �3���
	�
 .��/�3B��

where � �3��1
� 
 are built-in predicates. H

5. Conclusion

We presented a state of the art of multidimensional data manipulation in OLAP
systems. Taking OLAP treatments into account is part of the natural evolution of tradi-
tional databases towards decision support. We have seen that these treatments suppose
the definition of different viewpoints, to present data at different levels of details or
according to different categories. The relevant modeling of data is a cube where each
dimension is organized into a hierarchy.

We presented the OLAP user’s needs in term of modeling, elementary operations
and querying. We have shown how these needs are answered by formal proposals.
As an illustration, we gave the translation of several typical OLAP queries into the
formal languages. These languages cover a wide range of OLAP operations while
keeping their own specificities. Their main features are summarized in Figure 27 and
discussed briefly next.
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proposals main advantage main limitation

[GYS 96] specific restructuring no grouping
operators no aggregation

[AGR 96] operators translatable use of external functions
[AGR 97] into SQL for groupings and aggregation
[LI 96] specific grouping no symmetric treatment

operators of members and measures
[CAB 97] no dynamic hierarchies
[CAB 98] definition
[GYS 97] clear separation of use of external functions

contents and structure for groupings and aggregation
[HAC 97c] recursion allowed no semantics of recursion
[HAC 97b] through aggregation

Figure 27. Main features of the studied works

5.1. Paradigms used

The paradigms used are the three classical query languages paradigms [ABI 95].
The complex nature of OLAP queries accentuates the flavor of the paradigms: the
examples of Section 4 show the constructive aspect of algebraic specification and the
concise yet readable specifications of the Datalog style language.

Note that the concern for a reduced set of algebraic operators [AGR 96, AGR 97,
GYS 97] sometimes leads to operators used to express several elementary operations.
This seems unsuitable for query legibility, and may be irrelevant to an optimization
process based on the distinction of elementary operations.

5.2. Modeling cubes

The incorporation of the functional dependency between references and measures
within the definition of a cube is made in three different ways: in [AGR 96, AGR 97]
it is maintained via external functions that parameterize some operators (e.g., during
“roll-up”), for [GYS 97], this dependency needs the use of artificial identifiers, and
in [CAB 97, CAB 98, HAC 97c, HAC 97b], it is incorporated within the language
semantics.

5.3. Direct restructuring

Most of the works consider some animation operations as part of the graphical
interface. Hence in most of the cases, restructuring operations based on the relative
positions of dimensions or members (rotate, switch) are not easy to specify. However,
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the algebra proposed by [GYS 96] provides a better understanding of two-dimensional
restructuring, and is a promising basis to study the optimization of this kind of opera-
tions.

5.4. Hierarchies representation and definition

Most of the works do not allow hierarchies specification by query. [AGR 96, AGR 97]
motivate the use of external functions by keeping a low number of operators. Parame-
terizing operators by external functions means that the information described by these
functions (e.g., groupings) might not be taken into account for query optimization. If
the use of unrestricted functions allows to model any kind of (complex) hierarchies,
it supposes the knowledge of an external language for modeling important informa-
tion like groupings. On the other hand, the static flavor of the hierarchies description
proposed by [CAB 97, CAB 98] makes it difficult to specify ad-hoc groupings and
aggregates (as illustrated by the translation of query 4.6).

5.5. Remaining close to the relational model

Most of the works remain close to the relational framework. This concern is es-
sentially motivated by the reuse of well known techniques and the possibility of im-
plementing OLAP functionnalities on top of existing databases.

This paper allows to understand the fundamentals of models and manipulations
in OLAP systems. It would be a useful guide for e.g., designing and implementing a
query language in such systems. Obviously more work is still needed to complete the
study of OLAP query languages, such as finding the properties of the algebraic opera-
tors, providing a better understanding of the languages’ expressive powers, or studying
recursion through hierarchies. Another interesting topic would be to relate this work
to that concerned with query optimization in data warehouses (e.g., the works on ma-
terialized views [CHA 95]).
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