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Abstract. Multidimensional databases support eff iciently on-line analytical
processing (OLAP). In this paper, we depict a model dedicated to
multidimensional databases. The approach we present designs decisional
information through a constellation of facts and dimensions. Each dimension is
possibly shared between several facts and it is organised according to multiple
hierarchies. In addition, we define a comprehensive query algebra regrouping
the more popular multidimensional operations in current commercial systems
and research approaches. We introduce new operators dedicated to a
constellation. Finally, we describe a prototype that allows managers to query
constellations of facts, dimensions and multiple hierarchies.

1  Introduction

In order to improve decision-making process in companies, decision support systems
are built from sources (operational databases). These dedicated systems are based on
the data warehousing approach [4, 11, 24]. A data warehouse [11] stores large
volumes of data, which are extracted from multiple, distributed, autonomous and
heterogeneous data sources [4, 11, 24] and they are available for querying.

1.1  The Problem

In previous works, we specified a functional architecture of the decision support
systems [18, 19], based on a dichotomy of two repositories; a data warehouse collects
source data, which is relevant for the decision-makers, and it keeps data changes over
the time whereas data marts are deduced from the data warehouse and they are
dedicated to specific analyse (each data mart is subject-oriented). This architecture
distinguishes several issues laying the foundation of our study (cf. figure 1).
– The integration generates a global source from data sources; it is virtual and it is

described according to the ODMG data model. The motivating for using the object
paradigm at the integration is that it has proven to be successful in complex data
modelli ng [2].

– The construction generates a data warehouse as a materialised view [8] over the
global source. It is not organised according to a multidimensional model [12]. We
justify this choice by the fact that this modelli ng generates a lot of redundant data
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[4, 11, 12] limiting efficient warehouse management. We defined a flexible
temporal object-oriented data warehouse model in [18, 19].
Due to manager requirements, we provide two approaches for improving the

decision making process.
In the first approach the managers exploit the warehouse data to make global

analyses. They are helped by database specialists who can directly query warehouse
data using powerful and expressive languages. This approach has the advantage of
allowing global analyses of the decisional information.

In the second approach the managers make themselves their analyses. They require
advanced tools that facilit ate analyses and multidimensional operations. We provide a
solution based on two steps:
– The organisation models data for supporting eff iciently OLAP (“On-Line

Analytical Processing”) applications [5] in several subject-oriented data marts. The
data marts may be designed according to a multidimensional model [12, 17].

– The interrogation exploits decisional information. The managers improve their
decisions through advanced tools facilit ating OLAP applications.

I
N
T
E
G
R
A
T
I
O
N

C
O
N
S
T
R
U
C
T
I
O
N

O
R
G
A
N
I
S
A
T
I
O
N

I
N
T
E
R
R
O
G
A
T
I
O
N

Sources

Global
Source

Data
Warehouse

Data Marts

Database Specialists

Managers

Fig. 1. Architecture of Decision Support Systems.

In this paper, we focus on this approach based on data mart generations where
relevant data is stored “multidimensionaly” . We depict a multidimensional model and
we define a multidimensional query algebra.

1.2  Related Work

In academic research, multidimensional modelli ng has enjoyed spectacular growth
[6]. One of the significant development is the proposal of the data cube operator [7].
Several approaches treat data as n-dimensional cubes where the data is divided in
measures (facts) and dimensions [7, 9, 12], but the hierarchy between the parameters
is not captured explicitly by the schema. Therefore, several proposals provide
structured cube models, which capture dimension hierarchies [1, 3, 13, 14, 17]. Some
models provide statistical objects where a structured hierarchy is related to an explicit
aggregation function on a single measure supporting a set of queries [20]. To model
dimensions of complex structures, several models were made in an object oriented
framework [3, 16, 21]. Also, some proposals exploits the temporal nature of the
multidimensional modelli ng [10, 15, 16].

Most of these proposals introduce constraints and specific modelli ng choices as
ROLAP, MOLAP and OOLAP. Nevertheless, in [22] the authors provide a full
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conceptual approach through the starER model, which combines the star structure
with the semantically rich constructs of the ER model. In the same way, the model we
present is independent of the ROLAP, OOLAP or MOLAP context.

Moreover, existing approaches design a multidimensional database as a star
schema [12]. This approach integrates only one fact. We argue that an extended
multidimensional model in which a multidimensional database is designed as a
constellation of facts and dimensions is a more eff icient way for improving a
powerful multidimensional modelli ng [17]. This extended model needs a query
language integrating the more popular operations in current commercial systems and
research approaches as well as some operations related to the constellation
organisation. The main contribution of this paper is the comprehensive
multidimensional query algebra that we define. We provide formal definitions of the
most important multidimensional operations and we define two new operations
related to the constellation organisation.

1.3  Paper Outline

Section 2 defines a multidimensional model supporting facts, shared dimensions and
multiple hierarchies, independently of ROLAP, OOLAP or MOLAP contexts.
Section 3 presents the query algebra related to the multidimensional model. Section 4
describes extensions of our prototype GEDOOH.

2  A Multidimensional Model

In the architecture that we depict in figure 1, a data mart is subject-oriented; it is
dedicated to a specific class of users and it regroups all relevant information for
supporting their decisional requirements. The data mart must be modelled
“multidimensionaly” for improving analyses and decision making processes [12].

The multidimensional model we define is based on the idea of the “constellation”
[17], in which data marts are composed of several facts and dimensions; each
dimension is shared between facts and it can be associated to one or several
hierarchies. Therefore, the managers can handle several facts according to shared
dimensions, facilit ating comparisons between several measures.

2.1  Facts

A fact reflects information that have to be analysed; for example, a factual data is the
amount of sales occurring in shops.

Definition 1. A fact F is defined by a tuple (fname, Mfname) where
– fname is a name,
– Mfname={ m1, m2,…, mm} is a set of attributes where each mk represents one

measure.
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2.2  Dimensions and Hierarchies

A dimension reflects information according to which data of facts will be analysed. A
dimension is organised through parameters, which conform to one or several
hierarchies; the dimensions of interest may be the shop location, the time,…

Definition 2. A dimension D is defined by a tuple (dname, Adname, Hdname) where
– dname is a name,
– Adname is a set of attributes,
– Hdname=<Hdname

1, H
dname

2,…, Hdname

h> is an ordered set of hierarchies (Hdname

1 is called
the current hierarchy).

The parameters are organised according to hierarchies. Within a dimension, values
of different parameters are related through a family of roll up functions, denoted ρroll,
according to each hierarchy defined on them. A roll up function ρroll

H(pj→pj') associates a
value v of a parameter pj with a value v' of an upper parameter pj' in the hierarchy H.

Definition 3. A hierarchy Hdname

i is defined by a tuple (hname, Phname) where
– hname is a name,
– Phname=<pi1, pi2,…, phi> is an ordered set of parameters where ∀j∈[i1..hi], pj∈Adname.
Note that Adname contains a distinguished parameter all , such that dom(all )={ All } .

This attribute defines the upper granularity of hierarchies; for every hierarchy
Hdname

j∈Hdname, Hdname

j=< pi1, pi2,…, all  >.

2.3  Constellation Schema

A data mart is modelled according to a constellation schema; it is composed of
several facts and several dimensions, which are possibly shared between facts.

Definition 4. A constellation schema SDM is defined by a tuple (sname, FACT,
DIM, Paramsname) where

– sname is a name,
– FACT=<F1, F2,…, Fu> is an ordered set of facts (F1 is called the current fact),
– DIM={ D1, D2,…, Dv} is a set of dimensions,
– Paramsname: FACT→2DIM is a function such that Paramsname(Fi)=<Di

1, Di

2,…, Di

wi>.
It returns an ordered set of dimensions which are associated to the fact Fi (for the
current fact F1, D1

1 and D1

2 are called the current dimensions).
Example. The case we study is taken from commercial domain and it concerns

shop channels. The data mart supports analyses about sales and purchases related to
various commercial shop channels and commercial warehouses. Figure 2 represents
the example of a data mart; we use extended relational notations: ‘ ’ represents a fact
and ‘ ’ represents a dimension. Note that the constellation is named “channalyse” .
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PRODUCT          
productID
prod_desc
type
categ
pack_desc
pack_size
pack_type
pack_weight

SHOP
shopID
tax_rate
sh_desc
channel_desc
channel_class
branch_desc
adr_state
adr_county
adr_city
adr_zone

PAYMENT          
payementID
pay_desc
pay_class

SALE_PERSON         
personID
first_name
last_name
birth_date
sex
position

DATE          
dateID
day
day_desc
month
month_desc
quarter
year

SALE                 
payementID #
personID #
dateID #
shopID #
productID #
total_sales
quantity
tax_amount

PURCHASE            
productID #
dateID #
warehouseID #
quantity
price

STOCK             
warehouseID
war_desc
adr_state
adr_county
adr_city
adr_zone

Fig. 2. Example of a Constellation Schema.

Along each dimension, the administrator defines one, or possibly several,
hierarchy(ies). These hierarchies offer various views for analysed data; e.g. users can
analyse sales according to dates and shops, and they can display analysed data with an
administrative organisation of the country (adr_state, adr_county, adr_city) or with a
specific organisation (adr_city, adr_zone). The hierarchies are defined as follows.
– Hshop

1 = (”h_shop_channel” , <shopID, channel_class, branch_desc, all>)
– Hshop

2 = (”h_shop_administrative” , <shopID, city, county, state, all>)
– Hshop

3 = (”h_shop_zone” , <shopID, city, zone, all>)
– Hpayment

1 = (”h_payment” , <paymentID, pay_class, all>)
– Hperson

1 = (”h_person_position” , <personID, position, all>)
– Hproduct

1 = (”h_product_category” , <prodID, type, categ, all>)
– Hdate

1 = (”h_date_gregorian” , <dateID, day, month, quarter, year, all>)
– Hstock

1 = (”h_stock_administrative” , <warehouseID, city, county, state, all>)
– Hstock

2 = (”h_stock_zone” , <warehouseID, city, zone, all>)

3  A Comprehensive Multidimensional Query Algebra

Here, we express in a query algebra the most popular OLAP operators introduced in
the scientific literature and we provide new operators related to the constellation
organisation.

3.1  Data Displaying: “ n-table”

A constellation is displayed within an n-table according to columns, rows and planes.
The current fact F1 is used to define the displayed plane. The current dimensions D1

1

and D1

2 of the current fact define displayed lines and rows. For each current
dimension, the upper level is displayed according to the current hierarchy. Note that
because of the constellation feature, we do not display the complete information
stored in data marts; more precisely, only the measures of the current fact are
displayed according to the current dimensions and their current hierarchies.
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Example. We deal with the previous example. The current fact is “sale” and the
current dimensions are “shop” and “payment” displayed according to the hierarchies
“h_shop_channel” and “h_payment” .

Table 1. Example of a Constellation Displaying.

Shop / Hshop

1Sale
branch_desc BR1 BR2 BR3 BR4

pay_class total_sales, tax_amount,
quantity

PC1 (58,6, 2) (67,7, 3) (58,6, 1) (68,7, 2)
PC2 (60,6, 3) (55,6, 3) (50,5, 1) (65,7, 3)

Payment /
Hpayment

1

PC3 (45,5, 1) (50,5, 1) (52,5, 1) (64,6, 2)
Sale_person.position=”manager”
Product.categ=”C1”
Date.year=2000

3.2  Multidimensional Operations

We first define relational operators in the multidimensional algebra; we adopt the
most popular operators (Join, Aggregate, Union, Intersect, Difference). The operation
Slice and Dice is used on a dimension and it removes values of the dimension that do
not satisfy a restricted condition. Note that this operator realises selecting (or
restricting) in relational terminology.

Because the complete information stored in data marts is not displayed, we define
rotate operators for displaying measures according to various parameters. We adopt
rotate operators introduced in [1], and we define a new rotation between facts.

Definition 5. The DRotate operation permutes two dimensions Di and Dj of a fact
F. DRotate(Sh, F, Di, Dj)=Sh' where

– Sh=(sname, FACT, DIM, Paramsname) is a constellation schema,
– F∈FACT is a fact,
– Di∈DIM and Di∈DIM are two dimensions | Param(F)=<…, Di,…, Dj,…>.
Sh'=(sname, FACT, DIM, Paramsname') where Paramsname'(F)= <…, Dj,…, Di,…> and

∀F∈FAI, Fk≠F, Paramsname'(Fk)=Paramsname(Fk).

Definition 6. The HRotate operation permutes two hierarchies Hdname

i and Hdname

j of
a dimension D. HRotate(Sh, D, Hdname

i, H
dname

j)=Sh' where
– Sh=(sname, FACT, DIM, Paramsname) is a constellation schema,
– D∈DIM is a dimension,
– Hdname

i∈Hdname and Hdname

j∈Hdname are two hierarchies | Hdname=<…, Hdname

i,…,
Hdname

j,…>.
Sh'=(sname, FACT, DIM', Paramsname') where
– DIM'=DIM-{ Di} +{ Di'} | Di'=(dnamei,P

dnamei,Hdnamei'=<…,Hdname

j,…,Hdname

i,…>)
– ∀D∈FACT, if Di∈Paramsname(F) then Paramsname'(F)=Paramsname(F)-{ Di} +{ Di'}

else Paramsname'(F)=Paramsname(F).

Definition 7. The FRotate operation permutes two facts Fi and Fj of a constellation
schema Sh. FRotate(Sh, Fi, Fj)=Sh' where

– Sh=(sname, FACT, DIM, Paramsname) is a constellation schema,
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– Fi∈FACT and Fj∈FACT are two facts | FACT=<…, Fi,…, Fj,…>.
Sh'=(sname, FACT', DIM, Paramsname) where FACT'=<…, Fj,…, Fi,…>.
Example. We complete the previous example. Managers change the dimensions in

order to analyse measures according to other parameters. They permute “Shop” and
“Date” as well as “Payment” and “Product” . DRotate(DRotate(“channalyse”,
Payment, Product), Shop, Date)

Table 2. N-table Representing the Constellation after Rotations.

Sale Date / Hdate

1

year 1998 1999 2000
categ total_sales, tax_amount,

quantity
C1 (58,6, 2) (67,7, 3) (58,6, 1)
C2 (60,6, 3) (55,6, 3) (50,5, 1)

Product / Hproduct

1

C3 (45,5, 1) (50,5, 1) (52,5, 1)
Sale_person.position=”manager”
Payment.pay_class =”PC1”
Shop.branch_class=”BR1”

The positions (values) of each parameter are ordered. We introduce one operator
for changing these positions.

Definition 8. The operation Switch permutes two positions (values) posj1 and posj2

of a parameter p. Switch(Sh, d, p, posj1, posj2)=Sh' where
– Sh=(sname, FACT, DIM, Paramsname) is a constellation schema,
– D∈DIM is a dimension,
– p∈Pdname is a parameter of the current hierarchy | p∈Hdname

1,
– posj1∈dom(p) and posj2∈dom(p) are two positions (values) of the parameter p.
Sh' is the result where posj1 and posj2 are permuted in the hierarchy Hdname

1.

The RollUp and Drill Down operations are probably the most important operations
for OLAP; they allow users to change data granularities.

Definition 9. The DrillDown operation inserts into the current hierarchy of a
dimension Di, a parameter pj at a lower granularity. Drill Down(Sh, Di, pj)=Sh'
where

– Sh=(sname, FACT, DIM, Paramsname) is a constellation schema,
– Di∈DIM is a dimension such that Di=(dnamei, P

dnamei, Hdnamei),
– pj∈Pdnamei is a parameter (it will be integrated in the current hierarchy of Di).
Sh'=(sname, FACT, DIM', Paramsname') where
– DIM'=DIM-{ Di} +{ Di'} | Di'=(dnamei, Pdnamei+{ pj} , Hdnamei'=<<pj>+Hdname

1,
Hdname

2,…, Hdname

h>) and
– ∀F∈FACT, if Di∈Paramsname(F) then Paramsname'(F)=Paramsname(F)-{ Di} +{ Di'}

else Paramsname'(F)=Paramsname(F).

Definition 10. The RollUp operation inserts into the current hierarchy of a
dimension Di, a parameter pj corresponding to an upper granularity. RollUp(Sh,
Di, pj)=Sh' where

– Sh=(sname, FACT, DIM, Paramsname) is a constellation schema,
– Di∈DIM is a dimension | Di=(dnamei, P

dnamei, Hdnamei),
– pj∈parametersdnamei is a parameter, which will be integrated in the current

hierarchy of the dimension Di.
Sh'=(sname, FACT, DIM', Paramsname') where
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– DIM'=DIM-{ Di} +{ Di'} | Di'=(dnamei, Pdnamei+{ pj} , Hdnamei'=<Hdname

1+<pj>,
Hdname

2,…, Hdname

h>) and
– ∀F∈FACT, if Di∈Paramsname(F) then Paramsname'(F)=Paramsname(F)-{ Di} +{ Di'}

else Paramsname'(F)=Paramsname(F).
In order to ease analyses, in [1] the authors introduce operations allowing an

uniform treatment of parameters and measures; one operator converts parameters into
measures and another one creates parameters from specified measures. We adopt
these operations in the constellation framework.

Definition 11. The Push operation converts parameters into measures. Push(Sh, d,
p, f)=Sh' where

– Sh=(sname, FACT, DIM, Paramsname) is a constellation schema,
– D∈DIM is a dimension,
– p∈Pdname is a parameter of the dimension D,
– F∈FACT is a fact | D∈Param(F).
Sh'=(sname, FACT', DIM', Paramsname') where
– FACT'=FACT-{ F} +{ F'} | F'=(fname, Mfname+{ p} ),
– DIM'=DIM-{ Di} +{ Di'} | P

dname'=Pdname-{ p} and
– Paramsname'(F') = Paramsname(F)-{ Di}+{ Di'} , ∀F''∈FACT, F''≠F', Paramsname'(F'') =

Paramsname(F).

Definition 12. The Pull operation converts measures into parameters. Pull (Sh, F,
m, D)=Sh' where

– Sh=(sname, FACT, DIM, Paramsname) is a constellation schema,
– F∈FACT is a fact,
– m∈Mfname is a measure of the fact F,
– D∈DIM is a dimension | D∈Param(F).
Sh'=(sname, FACT', DIM', Paramsname') where
– FACT'=FACT-{ F} +{ F'} | F'=(fname, Mfname-{ m} ),
– DIM'=DIM-{ Di} +{ Di'} | P

dname'=Pdname+{ m} and
– Paramsname'(F') = Paramsname(F)-{ Di}+{ Di'} , ∀F''∈FACT, F''≠F', Paramsname'(F'') =

Paramsname(F).
To convert a constellation into several star schemas (constellations composed of

one fact), we introduce two operators. They allow users to reduce schemas.
Definition 13. The TSplit operation generates several sub schemas from a

constellation schema according to its facts. Each generated schema is composed
of one fact. TSplit (Sh)={ Sh1,…, Shu} where

– Sh=(sname, FACT, DIM, Paramsname) is a constellation schema.
∀i∈[1..u], Shi=(sname, FACT', DIM', Paramsname') is a resulting sub schema. Its a

constellation schema composed of one fact such that FACT'={ Fi} , DIM'={ D |
D∈DIM ∧ D∈Param(Fi)} and Param'(Fi)=Param(Fi).

Definition 14. The Split operation generates several sub schemas from a
constellation schema, which is composed of one fact. Each generated sub
schema results from a selection. Split (Sh, D, p)={ Sh1, Sh2,…, Shs} where

– Sh=(sname, FACT, DIM, Paramsname) is a constellation schema.
– D∈DIM is a dimension,
– p∈Pdname is a parameter of the dimension D | dom(p)={ pos1, pos2,…poss} .
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∀i∈[1..n], Shi=(sname, FACT, DIM, Paramsname) is a resulting sub schema
according to the slice operation Slice(Sh, D, pred(posi)).

4  Implementation

In previous works, we have implemented a prototype allowing administrators both to
define and to generate data warehouses and data marts. This prototype is called
GEDOOH. It is based on three components: a graphical interface, an automatic data
warehouse generator, and an automatic data mart generator.

Designer Analyser

Design
Interface

Generator

Query
Interface

Translator

GS

DW

DM

extractionextractions

Fig. 3. GEDOOH Architecture.

GEDOOH helps administrators in
designing data warehouses and data
marts. It is based on extended UML
notations for displaying schemas.
– Firstly, the administrator defines a data

warehouse from a graph of the global
source (or a data mart from a graph of
the data warehouse).

– Secondly, the generators create
automatically the data warehouse (or
the data mart) according to the
graphical definitions. The schema, the
first extraction (which populates the
data warehouse or the data mart) and
the refresh process are generated.

This tool is implemented in Java (jdk 1.3) on top of a relational database
management system (Oracle) and it is operational; its source code represents
approximately 8000 lines of Java code.

Now, we are implementing extensions in order to validate the model we present in
this paper and its associated query algebra. We add a user component allowing the
managers both to display and to query constellation schemas of the generated data
marts. The extension (the user component) is composed of two parts: an interface and
a query translator.
– The query interface displays an n-table representing a constellation. This

component uses internal structures of the displayed information. Each
multidimensional operation is treated by the query translator component.

– The query translator translates each multidimensional operation in a relational
query. This component sends the relational query to the RDBMS and it translates
the result in internal structures.
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File     Operations     Options

channalyse

Fig. 4. Example of a Constellation Displaying through the GEDOOH Query Interface.

5  Conclusion

We first introduce an architecture of decision support systems distinguishing several
issues and laying the foundation for our study. Based on the architecture, this paper
deals with the data mart designing and querying.

The multidimensional model we define is based on the idea of the “constellation” ,
in which data marts are composed of several facts and dimensions; each dimension is
shared between facts and it can be associated to one or several hierarchies. Shared
dimensions facilit ates comparisons between several measures according to the same
dimensional data organisation (same hierarchies, same parameters…). This approach
provides a unified framework for the multidimensional modelli ng independently of
the ROLAP, OOLAP or MOLAP context. We develop a query algebra for the data
marts. We express in a comprehensive algebra the most popular OLAP operators and
we provide new operators related to the constellation organisation (FRotate, TSplit ).

We are currently working on extending the tool GEDOOH. It allows administrators
to generate a data warehouse from sources through a graphical interface. We have
extended algorithms for generating data marts from data warehouses. Now, we
develop solutions for querying data marts based on the query algebra.

We will i nvestigate meta-modelli ng issues and we plan to develop a method for
designing decision support systems. We must provide a design method; it must be
composed of models (with concepts and constraints), a complete process and a tool.
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